(11) EP 3 799 850 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 07.04.2021 Bulletin 2021/14 (51) Int Cl.: **A61H 1/02** (2006.01) A61H 1/00 (2006.01) (21) Application number: 20199125.4 (22) Date of filing: 29.09.2020 (84) Designated Contracting States: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR Designated Extension States: **BAME** **Designated Validation States:** KH MA MD TN (30) Priority: **04.10.2019 PL 43138119** (71) Applicant: Akademia Gorniczo-Hutnicza im. Stanislawa Staszica w Krakowie 30-059 Krakow (PL) (72) Inventors: - KWASNIEWSKI, Jerzy 30-389 Krakow (PL) - MOLSKI, Szymon 31-901 Krakow (PL) - (74) Representative: Belz, Anna ul. Pólnocna 6/24 20-064 Lublin (PL) # (54) DEVICE FOR SPINE REHABILITATION AND METHOD OF SPINE REHABILITATION USING SAID DEVICE FOR SPINE REHABILITATION (57) A device for spine rehabilitation comprising a support frame, immovable crossbars, movable crossbars, and a holder and systems of actuators supporting a patient's head, shoulders, hip, knees, and feet, characterised in that it is equipped with linear actuators (8) mounted to the holder (7) supporting the patient's head and shoulders, whereby the holder (7) has a driving mechanism (9) situated horizontally and mounted to an immovable crossbar (6) of the support frame (1) and in its lower part is rotationally mounted, at the rotation point (10) of the holder, to the immovable crossbar (6). The device has on an immovable crossbar (2) of the holder (7) there are globular or rolling members (11) which allow for a smooth movement of the holder (7) in the horizontal plane. The holder (7) with its upper back surface moves on the rolling members (11) installed in the immovable crossbar (2) of the holder. The holder (7) is equipped with slidable actuator assemblies (12) allowing to adjust the device to anthropometric size of a particular patient. The support frame (1) with the suspended patient (16) and with structural members (14) is moved vertically by a lifting mechanism (13), and moves horizontally on track rollers (15). A method for spine rehabilitation using the device for lateral deviation of the patient's torso, whereby the patient's body situated horizontally, face up, is lifted on eight sling hangers taking hold of his/her head and his/her back in the points of shoulder girdle and pelvis girdle, and his/her calves and feet, and each of the hangers is connected on its ends with two linear actuators suspended in pairs from the horizontal support frame in position perpendicular to the axis of the patient's spine, whereby the movement of each of the linear actuators is individually controlled from a control system, characterised in that the lateral movement of the patient (16) suspended on the linear actuators (8) in the area of the head and the shoulders is carried out by the movement of the holder (7) by the driving mechanism (9) along an arc within a designated range of the movement. The driving mechanism (9) causes a lateral deviation of the patient's (16) torso up to a designated angle of deviation with the possibility to select a proper frequency and amplitude of the relocation set in the control system (17), and the head and the shoulders of the suspended patient are supported by the linear actuators (8) mounted to the holder (7) whose transversal movement is provided by the driving mechanism (9) which moves it along an arc within a designated range in such a way that the holder's (7) upper surface moves with a swinging motion on the rolling members (11) fitted in the immovable crossbar (2) of the supporting frame (1), whereas movements of the actuators (8) connected to the surface of the holder (7) cause lateral deviation of the torso and the spine at a designated deviation angle with the possibility of selecting an adequate frequency and amplitude of the relocation. Fig. 1 Fig.2. #### Description [0001] The invention relates to a device for spine rehabilitation, particularly for patients with painful postural asymmetry, discopathy and degenerative illnesses and a method for spine rehabilitation using said device for spine rehabilitation. [0002] From the description of Polish utility model No PL 60060 there is known a derotational-corrective-redressive device for treating scoliosis, used for active exercise, which is constructed from two frames, frontal and rear, connected at their upper part by guides on which slides are put on. In the lower part of the frontal frame there is mounted a support for hands to which a head hoist is attached and, above, on the rear frame, there is a knee support mounted to which a hip hoist is attached. Two connecting members stabilize the whole device. While exercising on the device a patient, in a supported kneeling position, is stabilized by shoulder blockades and a hip blockade. The patient while performing an exercise called "cat-cow pose" has his/her rib prominence and lumbar bump blocked at their apex by projections in pads which, during the exercise, press against the spine along the curve of the circular sector causing derotation, correction and redression of twisted arches of the spine that is deformed in those places. The other solution that has been disclosed in Polish invention No PL 176238 relates to a scoliosis correcting adjuster which comprises a rectangular base with vertical protrusions on one side of the longer flanks on which a crossbar is retractably mounted whose lift is adjustable along the line perpendicular to the base and along a line running at an acute angle to the base, whereas to the other side of the base there is a blocking plate mounted slidingly and dismountably to its longer flank. To a shorter flank of the base on the opposite side of the vertical protrusions an elastic line is attached which traverses through cut-outs in the longer flanks of the base and which has handles attached to its ends. Moreover, the base is equipped with a belt placed slidingly in cut-outs made in the bottom of the longer flanks of the base. [0003] From Polish patent PL 209439B1 description there is known a device comprising four separate supports supporting a patient-in a substantially horizontal position-his/her head, back in the points of shoulder girdle and pelvis girdle, and calves. These supports are mounted on a frame bearer by ball units which can swing in relation to the long axis of the spine and move vertically and be locked in a chosen position. Angle and level settings of each support introduces required shifts of the vertebra diagonally within anatomical range of the movement. Also, from Polish patent PL 226008B1 there is known a device for stimulation of muscles and rehabilitation of backbone, particularly for patients with painful postural asymmetry, discopathy and degenerative illnesses. The essence of the invention consists in that each sling hanger at its end is connected to linear actuators which are suspended in pairs from the horizontal support frame in the position perpendicular to the axis of the spine, and the movement of each of the linear actuators is individually controlled by the computerized medical control system software. And European application EP 2311424A1 discloses a device for physiotherapy and rehabilitation having a robust supporting structure in the form of a horizontal frame propped at its corners, having four cross elements out of which two middle are slidingly mounted on longitudinal rods of the frame and whose position can be adjusted. Suspended on internal rods there is a longitudinal member which can be pivoted horizontally. Cross-rods slidingly attached to the longitudinal member have on them mechanisms for fitting and adjusting length of slide lines on which the patient's body is suspended. Thanks to additional horizontal lines attached to the sling hanger it is possible to exert force acting along the axis of the spine. [0004] From publication WO 2007/017282A2 there is known an exercise apparatus having, in one of the embodiments of its frame design, a rod structure. The frame is suspended on the ceiling in a way that it can be rotated horizontally and vertically thanks to the use of a ball-andsocket joint and also lifted and lowered thanks to the use of a telescopic member. The frame has a longitudinal supporting member in the form of double rods or tubes. This member also acts as a guide for linear carriages with linear bearings that can move along it. Cross-rods fitted to the carriages have on their ends elements in the form of blocks or eyelets whose position on the rods can be adjusted and locked and which are designed for placing sling hangers on which patient's body is suspended above a bed. Moving parts can be power-driven, for example by an electric motor. [0005] Moreover, from Polish patent description No PL 217824 there is known a device for scoliosis treatment having a main frame in the shape of a cuboid with legs. Upper arms of the frame are connected with an upper beam to which an upper rod is attached by a ball-and-socket joint. Lower arms of the main frame are connected by a lower beam to which a lower rod is attached by a ball-and-socket joint. The upper rod has hand grips and the lower rod has platforms for feet of a person performing exercise. There are upper tightening members attached at the ends of the upper rod, and lower tightening members attached to the lower rod. **[0006]** The object of the invention is to develop a device allowing to introduce a movement of lateral deviation of the patient's torso during his/her rehabilitation in suspension and a method for carrying out spine rehabilitation using said device. [0007] A device for spine rehabilitation with the use of a method for lateral deviation of the patient's torso comprising a support frame, immovable crossbars, movable crossbars and a holder and actuator assemblies supporting the head, the arms, the hips, the knees and the feet of the patient characterised in that it is equipped with linear actuators mounted on the holder and to the movable crossbars that support the patient, whereby the hold- 40 45 er has a driving mechanism, sliding horizontally, mounted on the immovable crossbar of the holder of the supporting frame and which, on its lower part, is fitted to the immovable crossbar equipped with a rotating mechanism. The holder's upper back surface moves on rolling members installed in the immovable crossbar of the holder. Sling hangers for the head and for the shoulders connected on their ends with two linear actuators are suspended in pairs on the movable holder. Moreover, the movement of each of the actuators is controlled individually from a control unit assisted by a computer with medical software. Preferably, the linear actuators in pairs for each of the sling hangers are connected with the holder by slidable assemblies in the direction longitudinal to the axis of the holder and thus allow to adjust positions of the actuators of the sling hanger for the head according to anthropometric size of a particular patient. [0008] A method for spine rehabilitation using the device for lateral deviation of the torso of the patient suspended on the actuators takes place in the device where the patient's body is situated in substantially horizontal position, face up, and is lifted by four sling hangers that take hold of the patient's head, back in the points of shoulder girdle and pelvis girdle, and calves and each of the slings is connected on its ends with two linear actuators suspended in pairs on the horizontal support frame in the position perpendicular do the axis of the patient's spine, whereby the movements of each of the linear actuators is individually controlled from the control system, characterised in that the head and the shoulders of the suspended patient are supported by the actuators fitted in the holder whose transversal movement is provided by the rotating mechanism, whereas a slidable mechanism moves along an arc within a designated range in such a way that the holder's upper surface moves with a swinging motion on the rolling members fitted in the crossbar of the supporting frame, whereas movements of the actuators connected to the surface of the holder cause lateral deviation of the torso and the spine at a designated angle with the possibility of selecting proper frequency and amplitude of the deviations. [0009] The solution presented allows to carry out spine rehabilitation therapy in suspension with a dynamic lateral deviation of the torso optimally selected to a particular affection, with discretionarily varied, medically developed kinematics. The movements of the pairs of the actuators connected to the surface of the holder produces lateral deviation of the torso and of the spine up to a specified deviation angle with the possibility of selecting an adequate frequency and amplitude of the relocation, and, additionally, with various options of the longitudinal interaction of neighbouring sling hangers. For example, with the sling hanger for the pelvis girdle locked, side bending is induced by activating the shoulder girdle sling hanger. This kind of rehabilitation therapy, thanks to this solution, becomes safe and less burdensome while keeping the patient in safety and comfort. The exemplary embodiment of the invention is shown on the accompanying diagrammatic drawings. [0010] Fig. 1 shows the embodiment of the device according to the invention which comprises a support frame 1 equipped with an immovable crossbar 2 of a holder, a movable crossbar 3 for the hip, a movable crossbar 4 for the knees, a movable crossbar 5 for the feet and an immovable crossbar 6 of the holder. The holder 7 is rotationally mounted on the immovable crossbar 6 by a slidable mechanism 9 for moving the holder along an arc, whereby its surface is moving along the immovable crossbar 2 on globular or rolling members 11 fitted therein. Actuators 8 holding the patient's head and shoulders are mounted to the holder 7 and to the movable crossbars 3, 4, 5. The transverse movement of the holder 7 is actuated by a driving mechanism 9 mounted on the immovable crossbar 6. Thanks to the robust support frame 1 the patient is stabilized and feels safe. The holder 7 mounted rotationally at the rotation point 10 of the holder on the crossbar 6 and moving on rolling members 11 allows to acquire and to secure a desired position with a lateral movement of the patient's torso. Slidable assemblies 12 allow to adjust the position of the actuators of the sling hangers for the head and for the shoulders to anthropometric size of a particular patient. [0011] In the corners of the frame 1 (fig. 2) there are situated structural members 14 connected by a lifting mechanism 13 with track rollers 15. The torso of the patient 16 is laterally deviated in the device built on the track rollers 15 in such a manner that the body of the patient 16 situated horizontally, face up, is lifted by means of eight sling hangers taking hold of the head, the back in the points of shoulder girdle and pelvis girdle, and the calves, and the feet. The suspensions of the head, the shoulders, and the hip are at their ends connected in pairs with the linear actuators 8 suspended in pairs on the horizontal support frame 1 transversely to the axis of the patient's spine. The movement of each of the linear actuators is individually controlled from a control system 17. [0012] The head and the shoulders of the suspended patient (fig.1) are supported by the linear actuators 8 mounted to the holder 7 whose transversal movement is provided by the holder's driving mechanism 9 along an arc within a designated range of the movement. The holder's 7 upper back surface moves with a swinging motion on the rolling members 11 installed in the immovable crossbar 2 of the support frame 1. Repositioning of the holder's drive (for example an actuator) which connects the holder 7 and the immovable crossbar 6 causes lateral deviation of the torso and the spine to a designated angle with the possibility for selecting an adequate frequency and amplitude of the relocation as set in the control system 17. [0013] The device allows for a precise, three-plane correction of scoliosis. Thanks to the lateral deflection of the spine with the patient in horizontal position on the movable base and also thanks to the three-plane stabilization of the hip in the transverse plane and in the sagittal plane 40 20 25 30 35 45 50 55 a correction of the spine takes place. [0014] Thanks to its design the device according to the invention allows for spinal correction in three planes and makes it possible to treat in a correct manner scoliosis, rheumatic and neurological diseases. Scoliosis that are improperly treated might lead to a reduced physical capacity of the patient, increased intensity of neurological disorders, permanent disability, and in extreme cases to heart or/and respiratory failure and premature death. [0015] The device according to the invention might be useful to improve efficiency of spine rehabilitation therapy, might be used in rehabilitation centres, in companies producing medical equipment as well as in hospital rehabilitation wards. It is targeted for physiotherapists in order to improve and create new possibilities of working with the patient substantially decreasing energy expenditures in the process of patient rehabilitation. List of markings: #### [0016] - 1 Support frame - 2 Immovable crossbar of the holder - 3 Movable crossbar (for the hip) - 4 Movable crossbar (for the knees) - 5 Movable crossbar (for the feet) - 6 Immovable crossbar of the holder - 7 Holder - 8 Linear actuators - 9 Driving mechanism of the holder - 10 Point of rotation of the holder - 11 Rolling members - 12 Slidable assemblies of the actuators - 13 Lifting mechanism - 14 Structural members - 15 -Track rollers - 16 The patient - 17 Control system #### Claims - 1. A device for spine rehabilitation comprising a support frame, immovable crossbars, movable crossbars, and a holder and systems of actuators supporting a patient's head, shoulders, hip, knees, and feet, characterised in that it is equipped with linear actuators (8) mounted to the holder (7) supporting the patient's head and shoulders, whereby the holder (7) has a driving mechanism (9) situated horizontally and mounted to an immovable crossbar (6) of the support frame (1) and in its lower part is rotationally mounted, at the rotation point (10) of the holder, to the immovable crossbar (6). - 2. The device according to claim 1, characterised in that on an immovable crossbar (2) of the holder (7) there are globular or rolling members (11) which allow for a smooth movement of the holder (7) in the horizontal plane. - 3. The device according to claim 1, characterised in that the holder (7) with its upper back surface moves on the rolling members (11) installed in the immovable crossbar (2) of the holder. - 4. The device according to claim 1, characterised in that the holder (7) is equipped with slidable actuator assemblies (12) allowing to adjust the device to anthropometric size of a particular patient. - 5. The device according to claim 1, characterised in that the support frame (1) with the suspended patient (16) and with structural members (14) is moved vertically by a lifting mechanism (13), and moves horizontally on track rollers (15). - 6. A method for spine rehabilitation using the device for lateral deviation of the patient's torso, whereby the patient's body situated horizontally, face up, is lifted on eight sling hangers taking hold of his/her head and his/her back in the points of shoulder girdle and pelvis girdle, and his/her calves and feet, and each of the hangers is connected on its ends with two linear actuators suspended in pairs from the horizontal support frame in position perpendicular to the axis of the patient's spine, whereby the movement of each of the linear actuators is individually controlled from a control system, characterised in that the lateral movement of the patient (16) suspended on the linear actuators (8) in the area of the head and the shoulders is carried out by the movement of the holder (7) by the driving mechanism (9) along an arc within a designated range of the movement. - 7. The method according to claim 6, characterised in that the driving mechanism (9) causes a lateral deviation of the patient's (16) torso up to a designated angle of deviation with the possibility to select a proper frequency and amplitude of the relocation set in the control system (17), and the head and the shoulders of the suspended patient are supported by the linear actuators (8) mounted to the holder (7) whose transversal movement is provided by the driving mechanism (9) which moves it along an arc within a designated range in such a way that the holder's (7) upper surface moves with a swinging motion on the rolling members (11) fitted in the immovable crossbar (2) of the supporting frame (1), whereas movements of the actuators (8) connected to the surface of the holder (7) cause lateral deviation of the torso and the spine at a designated deviation angle with the possibility of selecting an adequate frequency and amplitude of the relocation. Fig. 1 Fig.2. #### **EUROPEAN SEARCH REPORT** Application Number EP 20 19 9125 | 10 | | | | |----|--|--|--| | 15 | | | | | 20 | | | | | 25 | | | | | 30 | | | | | 35 | | | | | 40 | | | | | 45 | | | | | | | | | 50 55 5 | ategory | Citation of document with in of relevant pass | ndication, where appropriate, | Relevant
to claim | CLASSIFICATION OF THE APPLICATION (IPC) | |----------------|---|----------------------------------|--|---| | (| KR 2009 0130457 A (
24 December 2009 (2 | [YOO JIN GON [KR]) | 1-7 | INV.
A61H1/02
A61H1/00 | | (| | | 1-7 | | | • | CN 106 074 088 A (L
9 November 2016 (20
* figures * | IU GANG; JI WEI)
D16-11-09) | 5 | | | | | | | | | | | | | TECHNICAL FIELDS
SEARCHED (IPC) | | | | | | A61H | The present search report has | been drawn up for all claims | | | | | Place of search | Date of completion of the search | | Examiner | | | Munich | 19 February 202 | 1 Shi | monin, Vladimir | | C | ATEGORY OF CITED DOCUMENTS | <u>T</u> : theory or princip | le underlying the | invention | | Y:part
docu | icularly relevant if taken alone
icularly relevant if combined with anot
iment of the same category | L : document cited | ate
in the application
for other reasons | ·
· | | | nological background
-written disclosure
rmediate document | & : member of the | | | #### EP 3 799 850 A1 ### ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO. EP 20 19 9125 5 This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 19-02-2021 | 10 | Patent document cited in search report | | Publication date | | Patent family
member(s) | Publication
date | | |-----------|---|----|------------------|------|----------------------------|---------------------|--| | | KR 20090130457 | Α | 24-12-2009 | NONE | | | | | 15 | PL 226008 | B1 | 30-06-2017 | NONE | | | | | | CN 106074088 | Α | 09-11-2016 | NONE | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | | | | 25 | | | | | | | | | 20 | | | | | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | | | | | 35 | 40 | | | | | | | | | | | | | | | | | | 45 | 50 | | | | | | | | | 459 | | | | | | | | | 55 SI WHO | | | | | | | | | EPO | For more details about this annex : see Official Journal of the European Patent Office, No. 12/82 | | | | | | | #### EP 3 799 850 A1 #### REFERENCES CITED IN THE DESCRIPTION This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard. ## Patent documents cited in the description - PL 60060 [0002] - PL 176238 [0002] - PL 209439 B1 [0003] - PL 226008 B1 [0003] - EP 2311424 A1 [0003] - WO 2007017282 A2 [0004] - PL 217824 [0005]