WO 20167009311 A1 I 000 OO 00 000

(19) World Intellectual Property Ny
Organization é
International Bureau _/

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

AT 0O

(10) International Publication Number

(43) International Publication Date / WO 2016/009311 Al
21 January 2016 (21.01.2016) WIPOI|PCT
(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 9/50 (2006.01) kind of national protection available). AE, AG, AL, AM,
. o . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ. CA. CH, CL, CN, CO, CR, CU. CZ, DE, DK, DM.
PCT/IB2015/055200 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
9 July 2015 (09.07.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
(25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, §Y, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: . L
14/335,771 18 July 2014 (18.07.2014) Us (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: THOMSON REUTERS GLOBAL RE- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
SOURCES [IE/CH]; Neuhofstrasse 1, CH-6340 Baar TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
(CH). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
(72) Tnventors: HABDANK, Jozef: Ordrupvej 69, 3th, DK, EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL, SK,
DK2920 Charlottenlund (DK). HABDANK-WOJEW- SM, TR), OAPI (BF, B, CF, CG, CL, CM, GA, GN, GQ
ODZKI, Tadeusz; Aleksandry 5/125, PL30-837 Krakow > > e g ? > ’ ?
(PL). GW, KM, ML, MR, NE, SN, TD, TG).
(74) Agent: KRETSCHMER, Thomas; Thomson Reuters Y Urhshed:

Global Resources, Neuhofstrasse 1, CH-6340 Baar (CH).

with international search report (Art. 21(3))

(54) Title: SYSTEM AND METHOD FOR ELECTRONIC WORK PREDICTION AND DYNAMICALLY ADJUSTING SERVER
RESOURCES

(57) Abstract: A computer-implemented system and method facilitate dy-

TASK 1 ESTIMATOR b~ 7306

MAX CONSUMPTION

ESTIMATOR

ture.
LOAD PREDICTOR I

322

i
l
:. .. TASK m ESTIMATOR

302

300 -’1

namically allocating server resources. The system and method include de-
termining a current queue distribution, referencing historical information as-
sociated with execution of at least one task, and predicting, based on the cur-
rent queue distribution and the historical information, a total number of tasks
of various task types that are to be executed during the time period in the fu-
ture. Based on this prediction, a resource manager determines a number of
servers that should be instantiated for use during the time period in the fu-

WO 2016/009311 PCT/IB2015/055200

SYSTEM AND METHOD FOR ELECTRONIC WORK PREDICTION AND
DYNAMICALLY ADJUSTING SERVER RESOURCES

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Utility Patent Application No.
14/335,771, filed July 18, 2014, which is herein incorporated by reference in its entirety.

BACKGROUND
[0002] To aid in the allocation of server resources for future time periods, one or
more algorithms are typically used for predicting future system loads. These predictions
generally are based solely on historical data such as, for example, previous system loads,
server operations, and the like. This conventional approach however is only suited for

predicting regularly scheduled task executions.

SUMMARY
[0003] Embodiments of the present invention facilitate dynamically allocating
server resources by using information about scheduled task executions, as well as
historical information, to predict future system loads. In embodiments, aspects of
embodiments of the invention may be combined with resource managers that add and
remove servers. As the term is used herein, servers may refer to computing devices,
software, firmware, virtual machines, and/or the like. Embodiments of the invention may
facilitate more precise and efficient server resource allocation. For example, by
implementing embodiments of the invention, a resource manager may be able to predict
that 30 minutes from the time of predicting, there will be 12,000 new task executions
scheduled, 50 minutes from the time of predicting, there will be 17,000 new task
executions scheduled, 70 minutes from the time of predicting, there will be 8,000 new task
executions scheduled, and the like. Using these estimates, the resource manager may
predict how many servers should be allocated during those time periods to perform the
executions such as, for example, by determining that 30 minutes from the time of
predicting, the system should have 80 instantiated servers, 50 minutes from the time of
predicting, the system should have 120 instantiated servers, 70 minutes from the time of

predicting, the system should have 60 instantiated servers, and the like.

WO 2016/009311 PCT/IB2015/055200

[0004] Embodiments of the invention include a computer-implemented method for
dynamically allocating server resources, the method including determining a current queue
distribution. The current queue distribution may include, for example, a number of times
that one or more tasks, each having a task type from a set of task types, are scheduled to be
executed within a time period in the future, where the current queue distribution is
associated with the task types of the one or more tasks. Embodiments of the method
further include referencing historical information associated with one or more prior
executions of at least one task of each task type associated with the current queue
distribution and predicting, based on the current queue distribution and the historical
information, a total number of tasks of each task type associated with the current queue
distribution that are to be executed during the time period in the future. In embodiments,
the total number of tasks of each task type associated with the current queue distribution
includes at least one task execution that is predicted to be scheduled before the time period
begins. Embodiments of the method also include estimating an average maximum task
consumption per server for each task type associated with the current queue distribution
and determining a total number of servers to allocate during the time period.

[0005] Embodiments of the invention also include a scalable, distributed server
system for performing tasks. Embodiments of the system include a plurality of worker
servers, each configured to execute one or more tasks; and a management server
configured to allocate server resources. In embodiments, the management server includes
a processor that instantiates a plurality of software components stored in a memory.
According to embodiments, the plurality of software components includes a task scheduler
configured to schedule at least one execution of each of the one or more tasks; a task
queue configured to store an indication of the at least one scheduled execution of the one
or more tasks; and a resource manager. In embodiments, the resource manager is
configured to (1) determine a current queue distribution, wherein the current queue
distribution comprises a number of times that each of the one or more tasks, each having a
task type from a set of task types, is scheduled to be executed within a time period that
begins in the future, where the current queue distribution is associated with the task types
of the one or more tasks; (2) reference historical information associated with one or more
prior executions of at least one task of each of the task types associated with the current
queue distribution; and (3) determine, based on the current queue distribution and the

historical information, a number of servers to allocate during the time period.

WO 2016/009311 PCT/IB2015/055200

[0006] Embodiments of the invention include another computer-implemented
method for dynamically allocating server resources. The method may include determining
a current queue distribution, where the current queue distribution includes a number of
times that one or more tasks, each having a task type from a set of task types, are
scheduled to be executed within a time period in the future, where the current queue
distribution is associated with the task types of the one or more tasks. Embodiments of the
illustrative method include referencing historical information associated with one or more
prior executions of at least one task of each task type associated with the current queue
distribution. The method may also include predicting, using a nonlinear estimator that
takes, as input, the current queue distribution and the historical information, a total number
of tasks of each task type associated with the current queue distribution that are to be
executed during the time period in the future and estimating an average maximum
consumption per server for each task type associated with the current queue distribution.
Estimating the average maximum consumption per server may include optimizing a
function configured to facilitate determining a maximum consumption that minimizes
backlog. The illustrative method also includes determining a total number of servers to

allocate during the time period.

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] FIG. 1 is a block diagram illustrating an operating environment (and, in
some embodiments, aspects of the present invention) in accordance with embodiments of
the present invention;
[0008] FIG. 2 is a flow diagram depicting an illustrative method of dynamically
allocating server resources in accordance with embodiments of the present invention;
[0009] FIG. 3 is a schematic diagram depicting an illustrative method of
determining a number of servers to allocate during a time period in accordance with
embodiments of the present invention; and
[0010] FIG. 4 is a flow diagram depicting another illustrative method of
dynamically allocating server resources in accordance with embodiments of the present
invention.
[0011] While the present invention is amenable to various modifications and
alternative forms, specific embodiments have been shown by way of example in the

drawings and are described in detail below. The present invention, however, is not limited

WO 2016/009311 PCT/IB2015/055200

to the particular embodiments described. On the contrary, the present invention is
intended to cover all modifications, equivalents, and alternatives falling within the ambit
of the present invention as defined by the appended claims.

[0012] Although the term “block™ may be used herein to connote different
elements illustratively employed, the term should not be interpreted as implying any
requirement of, or particular order among or between, various steps disclosed herein

unless and except when explicitly referring to the order of individual steps.

DETAILED DESCRIPTION

[0013] Embodiments of the present invention relate to dynamic allocation of
server resources in systems that distribute scheduled executions of tasks across multiple
servers. Embodiments of the invention facilitate allocation of server resources for task
executions during a time period in the future by using information from a task execution
queue combined with historical information to predict the load of the system during the
time period (e.g., the estimated number of task executions expected to be performed
during the time period). In embodiments, this predicted system load may be used to
determine the server resources that should be allocated to handle that load during the time
period. Aspects of embodiments of the invention may be implemented with any number
of systems that distribute server-based task executions such as, for example, embodiments
of the system described in U.S. Application No. 14/132,968 to Jozef Habdank er al.,
entitled “SYSTEM AND METHOD FOR DYNAMICALLY SCHEDULING NETWORK
SCANNING TASKS,” filed December 18, 2013, the entirety of which is hereby
incorporated herein by reference.

[0014] FIG. 1 depicts an example of an operating environment 100 (and, in some
embodiments, aspects of the present invention) in accordance with embodiments of the
present invention. In embodiments, the operating environment 100 may be, include, or be
included in, a scalable, distributed server system configured to perform server-based tasks.
As shown in FIG. 1, the operating environment 100 includes a management server 102
that manages, adds, and/or removes worker servers 104, which are configured for
executing tasks. In embodiments, the management server 102 is configured to allocate
server resources, e.g., hardware resources, software resources, and/or a combination
thereof. In embodiments, the management server 102 and/or the worker servers 104 may

communicate via a network 106. The network 106 may be, or include, any number of

WO 2016/009311 PCT/IB2015/055200

different types of communication networks such as, for example, a bus network, a short
messaging service (SMS), a local area network (LAN), a wireless LAN (WLAN), a wide
area network (WAN), the Internet, a P2P network, custom-designed communication or
messaging protocols, and/or the like. The network 106 may include a combination of
multiple networks.

[0015] According to embodiments, the management server 102 implements a
resource manager 108 that uses historical information and information about tasks that are
currently scheduled for execution during a time period in the future to dynamically
allocate server resources for executing tasks during the time period by predicting a total
number of task executions to be performed during the time period. A time period in the
future refers to a time period that occurs (e.g., begins) later in time than the time at, or
around, which the system, or an aspect of the system, makes a determination, prediction,
and/or the like, associated with the time period in the future. Similarly, “current” may
refer to the time at, or around, which the system, or an aspect of the system, makes the
determination, prediction, and/or the like.

[0016] The resource manager 108 may utilize information obtained about a current
queue distribution associated with one or more task execution queues 110, as well as
historical information associated with previous executions of tasks of certain task types, to
facilitate dynamic allocation of server resources for executing the tasks during a future
time period. The information may include a number of task executions scheduled for the
time period, types of tasks scheduled, and/or the like. Dynamically allocating server
resources may include adding and/or removing worker servers 104, assigning certain task
executions to certain worker servers 104, and/or the like.

[0017] As shown in FIG. 1, the management server 102 may be implemented on a
computing device that includes a processor 112 and a memory 114. Although the
management server 102 is referred to herein in the singular, the management server 102
may be implemented in multiple server instances (e.g., as a server cluster), distributed
across multiple computing devices, instantiated within multiple virtual machines, and/or
the like. The resource manager 108 may be stored in the memory 114. In embodiments,
the processor 112 executes the resource manager 108, which may facilitate dynamic server
resource allocations for executions of a task or tasks.

[0018] Still referring to FIG. 1, the management server 102 includes a system

manager 116 that manages operations of the worker servers 104. The worker servers 104

WO 2016/009311 PCT/IB2015/055200

may be implemented using any number of different computing devices. For example, the
management server 102 and the worker servers 104 may be included within a server
cluster implemented using a single computing device, multiple computing devices, one or
more virtual machines, and/or the like. In embodiments, the system manager 116 may be,
include, be included in, and/or integrated with the resource manager 108, and may provide
functions such as allocating resources (e.g., assigning particular scanning tasks and/or
scanning task executions to particular worker servers 104, collecting and analyzing server
performance feedback information, scaling the number of worker servers 104 available
for tasks, and/or the like), facilitating user input (e.g., providing interfaces for creating
scanning tasks, managing operations of various components of the service, and/or the
like), and/or facilitating system maintenance.

[0019] In embodiments, each worker server 104 is configured to perform one or
more executions of one or more tasks, where each of the tasks has a task type from a set of
task types. In embodiments, the system manager 116 may assign task types to tasks based
on any number of different categorization schemes and may store information associated
with task type assignments, task executions and scheduling, portions of the information,
and/or data extracted from the information in the memory 114 and may, for example,
index the information using a database 118. The database 118 may be, or include, one or
more tables, one or more relational databases, one or more multi-dimensional data cubes,
one or more non-relational databases, and/or the like. Further, though illustrated as a
single component implemented in the memory 114, the database 118 may, in fact, be a
plurality of databases 118 such as, for instance, a database cluster, which may be
implemented on a single computing device or distributed among a number of computing
devices, memory components, or the like.

[0020] In operation, a task scheduler 120 schedules executions of tasks such as, for
example, by placing an indication thereof in a time-based queue 110. The system manager
116 may be configured to determine which of the worker servers 104 will perform each
task execution, thereby facilitating dynamic load-balancing. Additionally, the system
manager 116 may be configured to add or remove servers to facilitate dynamic resource
allocation. For example, the system manager 116 may be configured to open and/or close
connections to server devices, remotely power-up and/or power-down server devices,
instantiate and/or delete server instances, create and/or destroy virtual machines and/or the

like.

WO 2016/009311 PCT/IB2015/055200

[0021] According to embodiments, various components of the operating
environment 100, illustrated in FIG. 1, may be implemented on one or more computing
devices. A computing device may include any type of computing device suitable for
implementing embodiments of the invention. Examples of computing devices include
specialized computing devices or general-purpose computing devices such “workstations,”

RT3

“servers,” “laptops,” “desktops,” “tablet computers,” “hand-held devices,” and the like, all
of which are contemplated within the scope of FIG. 1 with reference to various
components of the operating environment 100.

[0022] In embodiments, a computing device includes a bus that, directly and/or
indirectly, couples the following devices: a processor, a memory, an input/output (I/O)
port, an I/O component, and a power supply. Any number of additional components,
different components, and/or combinations of components may also be included in the
computing device. The bus represents what may be one or more busses (such as, for
example, an address bus, data bus, or combination thereof). Similarly, in embodiments,
the computing device may include a number of processors, a number of memory
components, a number of I/O ports, a number of I/O components, and/or a number of
power supplies. Additionally any number of these components, or combinations thereof,
may be distributed and/or duplicated across a number of computing devices.

[0023] In embodiments, the memory 114 includes computer-readable media in the
form of volatile and/or nonvolatile memory and may be removable, nonremovable, or a
combination thereof. Media examples include Random Access Memory (RAM); Read
Only Memory (ROM); Electronically Erasable Programmable Read Only Memory
(EEPROM); flash memory; optical or holographic media; magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices; data transmissions; or any
other medium that can be used to store information and can be accessed by a computing
device such as, for example, quantum state memory, and the like. In embodiments, the
memory 114 stores computer-executable instructions for causing the processor 112 to
implement aspects of embodiments of system components discussed herein and/or to
perform aspects of embodiments of methods and procedures discussed herein. Computer-
executable instructions may include, for example, computer code, machine-useable
instructions, and the like such as, for example, program components capable of being
executed by one or more processors associated with a computing device. Examples of

such program components include the resource manager 108, the system manager 116, the

WO 2016/009311 PCT/IB2015/055200

database 118, and the task scheduler 120. Program components may be programmed
using any number of different programming environments, including various languages,
development kits, frameworks, and/or the like. Examples of such environments may
include, for example, R, C#.Net, T-SQL, and/or the like. Some or all of the functionality
contemplated herein may also be implemented in hardware and/or firmware.

[0024] The illustrative operating environment 100 shown in FIG. 1 is not intended
to suggest any limitation as to the scope of use or functionality of embodiments of the
present invention. Neither should the illustrative operating environment 100 be
interpreted as having any dependency or requirement related to any single component or
combination of components illustrated therein. Additionally, any one or more of the
components depicted in FIG. 1 may be, in embodiments, integrated with various ones of
the other components depicted therein (and/or components not illustrated), all of which are
considered to be within the ambit of the present invention. For example, the resource
manager 108 may be integrated with the system manager 116.

[0025] As described above, in embodiments, a resource manager (e.g., the resource
manager 108 depicted in FIG. 1) may utilize information associated with task executions
that are scheduled for a time period in the future to facilitate dynamically allocating server
resources for performing executions of the task or tasks. FIG. 2 depicts an illustrative
method 200 for dynamically allocating server resources by using, for example, a
management server (e.g., the management server 102 depicted in FIG. 1), a resource
manager (e.g., the resource manager 108 depicted in FIG. 1), a system manager (e.g., the
system manager 116 depicted in FIG. 1), and/or one or more worker servers (e.g., the
worker servers 104 depicted in FIG. 1). The management server may manage the
functions performed by a number of worker servers to facilitate load-balancing with
respect to large numbers of tasks. In embodiments, functions that could be performed by
the worker servers may be performed by the management server, additionally or in lieu
thereof. According to embodiments, tasks may be created by a user or users, an automated
process or processes, and/or the like. A task may be provided, for example, to a task
scheduler (e.g., the task scheduler 120 depicted in FIG. 1) and, upon receiving the task, the
task scheduler may schedule the task for execution at an execution time by placing the task
(or an indication of the task and/or the scheduled execution) in a task queue (e.g., the task

queue 110 depicted in FIG. 1), which may be, for example, a unique time queue.

WO 2016/009311 PCT/IB2015/055200

[0026] As shown in FIG. 2, embodiments of the illustrative method 200 include
determining a current queue distribution (block 202). The current queue distribution refers
to a distribution associated with scheduled task executions. For example, a current queue
distribution may refer to a distribution of task types among a number of scheduled task
executions. The current queue distribution may include a number of times that one or
more tasks, each having a task type from a set of task types, is scheduled to be executed
within a time period in the future. In embodiments, the time period may include, for
example, a time that begins at least about 30 minutes in the future (i.e., about 30 minutes
from the time that a particular prediction, determination, measurement, and/or the like is
made) and may include any desired range of time (e.g., 30 seconds, 1 minute, 30 minutes,
and/or the like). Additionally, according to embodiments, task types may include any
number of different designations of types of tasks that may be performed by worker
servers such as, for example, web crawling task types, cloud-based computational task
types, network scanning task types, and/or the like.

[0027] Embodiments of the illustrative method 200 include referencing historical
information associated with one or more prior executions of at least one task of each task
type associated with the current queue distribution (block 204) and predicting a total
number of tasks to be executed during a time period in the future (block 206). The total
number of tasks to be executed during the time period in the future may be predicted based
on the current queue distribution and the historical information, and include a prediction
associated with task executions that are not scheduled at the time of the predicting but that
are predicted to be scheduled before the time period begins and/or during the time period.
[0028] According to embodiments, predicting the total number of tasks to be
executed during the time period may include providing inputs (e.g., a prior task creation
rate, a prior prediction value, and/or the like) to a nonlinear estimator. In embodiments,
the nonlinear estimator may be configured to transform one or more of the inputs based on
one or more assumptions. The nonlinear estimator may be, or include, a nonlinear time
series statistical model such as, for example, an autoregressive-moving-average with
exogenous inputs estimator (ARMAX), a Hammerstein-Wiener estimator, and/or the like.
[0029] As shown in FIG. 2, the method 200 further includes estimating a
maximum server consumption per server for each task type associated with the current
queue distribution (block 208) and determining a number of servers to allocate for the time

period (block 210). In embodiments, estimating an average maximum task consumption

WO 2016/009311 PCT/IB2015/055200
10

per server may include determining a current number of instantiated servers, determining
an historical backlog, determining an historical task consumption rate, and providing the
inputs to another nonlinear estimator. In embodiments, the nonlinear estimator may be
configured to optimize a function that defines a relationship between backlog and
consumption. In embodiments, maximum server consumption may be measured in other
ways such as, for example, maximum task consumption per server for all task types,
maximum task consumption per task type for all servers, and/or the like. As shown in
FIG. 2, embodiments of the method 200 further include adding or removing servers prior
to the time period so as to allocate the determined number of servers (block 212).

[0030] FIG. 3 is a schematic diagram depicting an illustrative process flow 300 for
dynamically allocating server resources. The functions depicted in FIG. 3 and discussed
below may be implemented as computer-executable instructions and may be configured as
program components, modules, and/or the like, and also be implemented in hardware or a
combination of hard- and software. As shown in FIG. 3, embodiments of the illustrative
process flow 300 include a server count estimator 302 that determines a number, S, (304),
of servers to be allocated during a particular time period. The server count estimator 302
determines the number, S, (304), of servers based on a number of inputs, some of which
may be generated using one or more task estimators 306, 308.

[0031] According to embodiments, any number of task estimators 306, 308 may be
used. For example, in embodiments, a first task estimator 306 may be used to generate
inputs associated with a first task and/or task type, a second task estimator (not shown)
may be used to generate inputs associated with a second task and/or task type, and an mth
task estimator 308 may be used to generate inputs associated with an mth task and/or task
type. In embodiments, a separate task estimator 306, 308 may be used for each particular
task, each task type, specified time periods, and/or the like. In FIG. 3 and the
accompanying description, the example is described in the context of a number of task
estimators, each configured to generate inputs associated with a unique task type. This
example is used for purposes of clarity only, and embodiments of the process depicted in
FIG. 3 may be implemented in the context of a single task estimator and/or task estimators
configured to generate inputs associated with other categories of information, as described
above. Additionally, although the task 1 estimator 306 is illustrated, and described in

further detail below, it should be understood that any number of different aspects of the

WO 2016/009311 PCT/IB2015/055200
11

described detail may be similarly applicable to any number of additional task estimators
such as, for example, the task m estimator 308.
[0032] As shown in FIG. 3, the task 1 estimator 306 includes a load predictor 310
and a maximum consumption estimator 312. The load predictor 310 may be configured to
predict the total number of task executions of each task type to be performed during the
time period. In embodiments, the load predictor 310 makes this prediction by determining
at least one input that includes at least one of a prior task creation rate and a prior
prediction value. In embodiments, the load predictor 310 may be, or include, a nonlinear
estimator. The nonlinear estimator may take any number of different forms and be
configured according to any number of different configurations. For example, the first
nonlinear estimator may be configured to transform one or more inputs based on one or
more assumptions such as, for example, an assumed downward bias that increases with
time, an increasing variance, and/or the like. According to various embodiments, the load
predictor 310 may be, or include, a nonlinear time series statistical model such as, for
example, an autoregressive-moving-average with exogenous inputs estimator (ARMAX),
a Hammerstein-Wiener estimator, and/or the like.
[0033] As shown in FIG. 3, the load predictor 310 takes, as input, one or more
prior task creation rates, x; . . . x, (314), associated with tasks of the first task type, a
current number, E; . . . E, (316), of task executions of the first task type scheduled in the
queue (which may actually be several values, reflecting the number of tasks in the queue
at each of several recent points in time), and one or more prior prediction values, y/ ... y,
(318), of task executions. The prior task creation rate or rates, x; . . . x, (314), may
include, for example, a rate of task execution scheduling for one or more historical time
periods, an average task execution scheduling rate, and/or the like. The current number,
E; ... E, (316), of tasks of the first task type in the queue may be determined from a
current queue distribution, which, as described above, may include a number of times that
one or more tasks, each task having a task type from a set of task types, are scheduled to
be executed within a time period in the future. Additionally, the prior prediction value or
values, yI . . . y, (318), of task executions may include previously predicted values
indicating predicted numbers of task executions to be scheduled (i.e., previous outputs
from the load predictor 310).
[0034] As shown in FIG. 3, the load predictor 310 utilizes the inputs 314, 316 and
318 to predict a total number, y; (320), of tasks of the first task type that are to be executed

WO 2016/009311 PCT/IB2015/055200
12

during the time period. In embodiments, for example, the load predictor 310 may include
a nonlinear estimator of the following form:

Yn = f(xn - Xn—pr Yn-1 - Yn-r Eniq - Enys); where

Xp . Xn_p are prior rates of task execution scheduling;

Vn—1 - Yn—r are prior and future values of prediction;

Eniq ... Eyys are the partial future information about executions, or an

execution distribution in a time queue; and

V. 1s the estimated total number of task executions to be performed during

the time period.
According to embodiments, the expression E,,.; ... E,, ¢ may be nonlinearly transformed
under the following assumptions: the expression has a downward bias, the downward bias
is increasing with time, and the range of the values of E,.; ... E,.¢ changes at every
iteration.
[0035] As shown in FIG. 3, the maximum consumption estimator 312 utilizes
inputs 322, 324, and 326 to estimate an average maximum task consumption per server, ¢;
(328), for the first task type. That is, the maximum consumption estimator 312 estimates a
maximum number of tasks of the first task type that a server (e.g., a worker server 104
depicted in FIG. 1) can perform in a given time period. As shown in FIG. 3, the maximum
consumption estimator 312 takes, as input, a current number, S (322), of instantiated

servers. Additionally, the maximum consumption estimator 312 takes, as input, one or

more values associated with historical consumption, c¢; . . . ¢, (324), of tasks of the first
task type, and one or more values associated with historical backlog, b; . . . b, (326), of
tasks of the first task type. The historical consumption, c; . . . ¢, (324), may include, for

example, a number of executions of tasks of the first task type performed during one or
more historical time periods. In embodiments, the historical consumption, c; . . . ¢, (324),
may be determined for a single worker server, for a specified number of worker servers,
and/or independently of the number of worker servers. The historical backlog, b; . .. b,
(326), may include, for example, a number of task executions that were scheduled for a
prior time period that failed to execute on time as a result of insufficient server resources.

[0036] In embodiments, the maximum consumption estimator 312 may be,
include, or otherwise utilize, a nonlinear estimator. The nonlinear estimator may be

configured to optimize a function that defines a relationship between backlog and

WO 2016/009311 PCT/IB2015/055200
13

consumption. For example, the maximum consumption estimator 312 may be a nonlinear
estimator that takes the following form:
¢ = g(Sn by . by_p, €y o Cy) 5 where
S,, is a current number of instantiated servers;
by ...by_, is an historical backlog, defined as a number of scheduled
executions that weren’t performed due to insufficient server resources;
Cp . Cn—r 18 an historical average task consumption rate per server; and
¢, 1s an estimated maximum consumption rate per server.
According to embodiments, the estimator may be configured to optimize the following

function:

ge = max (;); where u is a positive constant parameter.

(1+b "
The parameter, u, sets the curvature of the graph and may be selected, for example, to
generate a slower or faster response, as desired. As can be seen from the illustrative
function, the estimator may be configured to find a maximum consumption while
maintaining backlog as close to zero as possible. In this manner, the resource manager
may allocate as few resources as possible while minimizing backlog.

[0037] As described above, the server count estimator 302 takes, as input, the
average maximum consumption per server, ¢; (328), for the first task type, the predicted
total number, y; (320), of executions of tasks of the first task type, and any number of
other similar values, ¢,, (330) and p,, (332), as generated by additional task estimators 308.
Additionally, as shown in FIG. 3, the server count estimator 302 may take, as input, the
current number, S (322), of instantiated servers. According to embodiments of the
example described above, the server count estimator may, for example, be a function of

the following form:

§n:max{[Yin] [Yzn] [Ymn l};where
Sintin Szntan Smntmn

S, is a predicted number of servers required to be allocated for the

particular time period and the operation designated by the brackets provides
the closest integer higher than the number in the brackets; and
m is a number of task types.
According to embodiments, the function is configured to find the maximum number of

required servers in the set of outputs coming from all task estimators.

WO 2016/009311 PCT/IB2015/055200
14

[0038] The illustrative process 300 shown in FIG. 3 is not intended to suggest any
limitation as to the scope of use or functionality of embodiments of the present invention.
Neither should the illustrative process 300 be interpreted as having any dependency or
requirement related to any single component or combination of components illustrated
therein. Additionally, any one or more of the components depicted in FIG. 3 may be, in
embodiments, integrated with various ones of the other components depicted therein
(and/or components not illustrated), all of which are considered to be within the ambit of
the present invention. For example, the load predictor 310 and the maximum consumption
estimator 312 may be integrated as a single component.
[0039] Additional, alternative and overlapping aspects of embodiments of the
invention for dynamically allocating server resources for performing tasks are illustrated
in FIG. 4. As described above, a resource manager (e.g., the resource manager 108
depicted in FIG. 1) may utilize a current queue distribution, in addition to historical task
execution information, to dynamically add or remove worker servers so as to allocate a
determined number of servers for a particular time period in the future. FIG. 4 is a flow
diagram depicting an illustrative method 400 of dynamically allocating server resources.
[0040] As depicted in FIG. 4, embodiments of the illustrative method 400 include
determining a current queue distribution (block 402), determining a prior task creation rate
(block 404), and determining a prior task execution prediction value (block 406). As
described above, the current queue distribution may include a number of times one or
more tasks, each having a task type of a set of task types, are scheduled to be executed
within a time period in the future, where the current queue distribution is associated with
the task types of the one or more tasks. Embodiments of the method 400 include
predicting (e.g., using a load predictor such as, for example, the load predictor 310 shown
in FIG. 3) a total number of tasks of each of the task types associated with the current
queue distribution, to be executed during the time period (block 408). In embodiments,
the total number of tasks to be executed during the time period may be predicted using a
nonlinear estimator.
[0041] As shown in FIG. 4, the resource manager may determine a current number
of instantiated servers (block 410). Additionally, embodiments of the illustrative method
400 include determining an historical backlog (block 412) and an historical task
consumption rate (block 414). As described above, the historical backlog may include a

number of task executions that were scheduled for a prior time period that failed to be

WO 2016/009311 PCT/IB2015/055200
15

performed on time as a result of insufficient server resources. The historical task
consumption rate may include a number of task executions performed during a prior time
period. Based on this information, the resource manager estimates an average maximum
task consumption per server (block 416) and determines a total number of servers to
allocate during the time period (block 418). In embodiments, the method 400 further
includes allocating a determined number of servers (block 420) such as by adding or
removing servers prior to the time period.

[0042] While embodiments of the present invention are described with specificity,
the description itself is not intended to limit the scope of this patent. Thus, the inventors
have contemplated that the claimed invention might also be embodied in other ways, to
include different steps or features, or combinations of steps or features similar to the ones
described in this document, in conjunction with other technologies. For example,
embodiments of the invention may be implemented in connection with anti-piracy network
canning tasks, web crawling tasks, private and public cloud computing tasks, and/or the

like.

WO 2016/009311 PCT/IB2015/055200
16

CLAIMS

1. A computer-implemented method for dynamically allocating server

resources, the method comprising:

determining a current queue distribution, wherein the current queue
distribution comprises a number of times that one or more tasks, each
having a task type from a set of task types, are scheduled to be
executed within a time period in the future, wherein the current queue

distribution is associated with the task types of the one or more tasks;

referencing historical information associated with one or more prior
executions of at least one task of each task type associated with the

current queue distribution;

predicting, based on the current queue distribution and the historical
information, a total number of tasks of each task type associated with
the current queue distribution that are to be executed during the time
period in the future, wherein the total number of tasks of each task type
associated with the current queue distribution comprises at least one
task execution that is predicted to be scheduled before the time period

begins;

estimating an average maximum task consumption per server for each task

type associated with the current queue distribution; and
determining a total number of servers to allocate during the time period.

2. The method of claim 1, further comprising adding or removing one or more
servers prior to the beginning of the time period so as to allocate the determined total

number of servers during the time period.

3. The method of claim 1, wherein predicting the total number of tasks of
each task type associated with the current queue distribution that are to be executed during

the time period comprises:

WO 2016/009311 PCT/IB2015/055200
17
determining at least one input comprising at least one of a prior task

creation rate and a prior prediction value; and
providing the at least one input to a nonlinear estimator.

4. The method of claim 3, wherein the nonlinear estimator is configured to
transform the at least one input based on at least one assumption, wherein the at least one
assumption comprises at least one of a downward bias that increases with time and an

increasing variance.

5. The method of claim 4, wherein the nonlinear estimator comprises a

nonlinear time series statistical model.

6. The method of claim 1, wherein estimating the average maximum task
consumption per server for each task type associated with the current queue distribution

comprises:

determining a current number of instantiated servers;

determining an historical backlog, wherein the historical backlog comprises
a number of tasks that were scheduled for a prior time period that

failed to execute on time as a result of insufficient server resources;
determining an historical task consumption rate; and

providing the determined current number of instantiated servers, the
determined historical backlog, and the determined historical task

consumption rate to a nonlinear estimator.

7. The method of claim 6, wherein the nonlinear estimator is configured to

optimize a function that defines a relationship between backlog and consumption.

8. The method of claim 1, wherein the time period comprises a time that

begins at least about 30 minutes in the future.

9. The method of claim 1, wherein the set of task types comprises at least one
of a web crawling task type, a cloud-based computational task type, and a network

scanning task type.

WO 2016/009311 PCT/IB2015/055200
18
10. A scalable, distributed server system for performing tasks, the server

system comprising:

a plurality of worker servers, wherein each of the plurality of worker

servers is configured to execute one or more tasks; and

a management server configured to allocate server resources, the
management server comprising a processor that instantiates a plurality
of components stored in a memory, the plurality of components

comprising:

a task scheduler configured to schedule at least one execution of each

of the one or more tasks;

a task queue configured to store an indication of the at least one

scheduled execution of each of the one or more tasks; and
a resource manager configured to

determine a current queue distribution, wherein the current queue
distribution comprises a number of times that each of the one or
more tasks, each having a task type from a set of task types, is
scheduled to be executed within a time period that begins in the
future, wherein the current queue distribution is associated with

the task types of the one or more tasks;

reference historical information associated with one or more prior
executions of at least one task of each of the task types associated

with the current queue distribution; and

determine, based on the current queue distribution and the historical
information, a number of servers to allocate during the time

period.

WO 2016/009311 PCT/IB2015/055200
19
11. The system of claim 10, wherein the resource manager is further configured

to:

predict, based on the current queue distribution and the historical
information, a total number of tasks of each of the task types
associated with the current queue distribution that are to be executed
during the time period, wherein the total number of tasks of each of the
task types associated with the current queue distribution comprises at
least one task execution predicted to be scheduled before the time

period begins; and

estimate an average maximum task consumption per server for each of the

task types associated with the current queue distribution.

12. The system of claim 11, wherein the resource manager is configured to
predict the total number of tasks of each of the task types associated with the current
queue distribution that are to be executed during the time period by determining at least
one input comprising at least one of a prior task creation rate and a prior prediction value;

and providing the at least one input to a nonlinear estimator.

13. The system of claim 12, wherein the nonlinear estimator is configured to
transform the at least one input based on at least one assumption, wherein the at least one
assumption comprises at least one of a downward bias that increases with time and an

increasing variance.

14. The system of claim 13, wherein the nonlinear estimator comprises a

nonlinear time series statistical model.

15. The system of claim 11, wherein the resource manager is configured to
estimate the average maximum consumption per server for each of the task types
associated with the current queue distribution by utilizing a nonlinear estimator that takes,
as input, at least one of a current number of instantiated servers, an historical task
consumption rate, and an historical backlog, wherein the historical backlog comprises a
number of tasks that were scheduled for a prior time period that failed to execute on time

as a result of insufficient server resources.

WO 2016/009311 PCT/IB2015/055200
20
16. A computer-implemented method for dynamically allocating server

resources, the method comprising:

determining a current queue distribution, wherein the current queue
distribution comprises a number of times that one or more tasks, each
having a task type from a set of task types, are scheduled to be
executed within a time period in the future, wherein the current queue

distribution is associated with the task types of the one or more tasks;

referencing historical information associated with task creation
corresponding to each task type associated with the current queue
distribution, wherein the historical information comprises at least one

prior rate of task creation;

predicting, using a nonlinear estimator that takes, as input, the current
queue distribution and the historical information, a total number of
tasks of each task type associated with the current queue distribution

that are to be executed during the time period in the future;

estimating an average maximum consumption per server for each task type
associated with the current queue distribution, wherein estimating the
average maximum consumption per server comprise optimizing a
function configured to facilitate determining a maximum consumption

that minimizes backlog; and
determining a total number of servers to allocate during the time period.

17. The method of claim 19, wherein the function is defined by a maximum of

aratio of a maximum estimated consumption rate per server to an historical backlog term.

WO 2016/009311 PCT/IB2015/055200

1/4
1GQW
WORKER WORKER WORKER
104 SERVER 104 SERVER 104 SERVER

NETWORK
~ 106

MANAGEMENT SERVER

112~ PROCES50R

MEMORY

116+ SYSTEM MANAGER

102 o

120w TASK SCHEDULER
114 o i1

118~ DATABASE

108~ RESOURCE MANAGER

FiG. 1

WO 2016/009311

2/4

200 W

PCT/IB2015/055200

DETERMINE A CURRENT QUEUE
DISTRIBUTION

202

REFERENCE HISTORICAL INFORMATION

204

PREDICT ATOTAL NUMBER OF TASKS TO BE
EXECUTED IN A TIME PERIOD

~" 206

ESTIMATE A MAXIMUM SERVER
CONSUMPTION

" 208

DETERMINE A NUMBER OF SERVERS TO
ALLOCATE FOR THE TIME PERIOD

210

|

ADD OR REMOVE SERVERS PRIORTO THE
TiVIE PERIOD TO ALLOCATE THE DETERMINED
NUMBER OF SERVERS

212

FIG. 2

WO 2016/009311

3/4

PCT/IB2015/055200

326

14

16

318

{
| .
E .Ch /,é»aza
E MAX CONSUMPTION
I ESTIMATOR b
E o n
i
P
| 312 eoe X 3
i
| LOAD PREDICTOR ‘g / E;..E, /é"g
i
; «-'57/ Vi...Vn f'i‘
322
| { |
S i 310 !

[| L. .| TASK m ESTIMATOR

T R S |

WO 2016/009311 PCT/IB2015/055200

4/4
DETERMINE CURRENT QUEUFE
o 402
DISTRIBUTION i
DETERMINE HISTORICAL
o 33 2
_— i . BACKLOG
DETERMINE PRIOR TASK
o 304
CREATION RATE i
DETERMINE HISTORICAL TASK
o 414
CONSUMPTION RATE
DETERMINE PRIOR TASK
EXECUTION PREDICTION k=406
VALUE
ESTIMATE AVFRAGE
MAXIMUM TASK o 416
CONSUMPTION PER SERVER
PREDICT TOTAL NUMBER OF
TASKS TO BE EXECUTED b—408 i
DURING TIME PERIOD
DETERMINE TOTAL NUMBER
OF SERVERS TO ALLOCATE b—418
DURING TIME PFRIOD
DETFRMINE CURRENT
NUMBER OF INSTANTIATED ke~ 410
SERVERS
ALLOCATE DETERMINED
o 330
NUMBER OF SERVERS

FIG. 4

INTERNATIONAL SEARCH REPORT

International application No

PCT/1B2015/055200

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/50
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C.DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 2012/089726 Al (DODDAVULA SHYAM KUMAR
[IN]) 12 April 2012 (2012-04-12)

1-17

paragraphs [0001] - [0008],
[0025], [0040] - [0057],
[0092], [0099] - [0102],
12; figures 4, 6, 10

14 November 2013 (2013-11-14)
abstract; figure 1
paragraphs [0002] - [0013],
[0077], [0204], [0236]

the whole document

[0023] -
[0088] -
[0108]; claim

X US 2013/304903 Al (MICK JASON [US] ET AL)

[0040],

A US 6 993 458 Bl (CASTELLI VITTORIO [US] ET
AL) 31 January 2006 (2006-01-31)

1-17

1-17

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

o

o

o

g

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

Date of the actual completion of the international search

8 October 2015

Date of mailing of the international search report

19/10/2015

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Limacher, Rolf

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/IB2015/055200
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2012089726 Al 12-04-2012 NONE
US 2013304903 Al 14-11-2013 US 2013304903 Al 14-11-2013
US 2015235308 Al 20-08-2015
WO 2014116678 Al 31-07-2014

Form PCT/ISA/210 (patent family annex) (April 2005)

	Bibliography
	Abstract
	Description
	Claims
	Drawings
	Search-report

