a2 United States Patent

US009875095B2

10) Patent No.: US 9,875,095 B2

Hanusiak et al. 45) Date of Patent: Jan. 23, 2018
(54) SOFTWARE BUNDLE DETECTION 8,549,514 B2 10/2013 Carteri et al.
2005/0058268 Al* 3/2005 Koch ... HO04W 68/005
(71) Applicant: International Business Machines . 379/207.16
Corporation, Armonk, NY (US) 2007/0156430 Al 7/2007 Kaetkercccceen. G0761F7§§1/(1)2
N .
(72) Inventors: Tomasz Hanusiak, Czarny Dunajec 2010/0115496 AL* 52010 Amichai ... GO6F;}/73/?§§
(PL); Michal Klak, Zielonki (PL); 2013/0055202 Al 22013 Dudek et al.
Konrad W. Komnata, Cracow (PL); 2014/0279779 Al* 9/2014 Zouccccccecevvncennn. GO6N 3/08
Konrad K. Skibski, Zielonki (PL) ' .y loch 70/6/25
2016/0055072 Al 2/2016 Baloch GO6F 11/368
(73) Assignee: International Business Machines 714/38.1
Corporation, Armonk, NY (US)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Wikipedia, The Free Encyclopedia, “ISO/IEC 19770,” https://en.
U.S.C. 154(b) by 0 days. wikipedia.org/wiki/ISO/IEC__19770, Jul. 20, 2015, pp. 1-10.
IBM, “Software network connections,” IBM Knowledge Center,
g
(21) Appl. No.: 14/870,213 http://www-01.ibm.com/support’knowledgecenter/SS8JFY__7.5.0/
’ com.ibm.Imt75.doc/com.ibm.license. mgmt.admin.doc/r_rule__
: k_ connection html%23auditreportlifecycle, printed on
(22) Filed: Sep. 30, 2015 SW_network_ P yele, p
Aug. 17, 2015, 1 page.
(65) Prior Publication Data * cited by examiner
US 2017/0090913 Al Mar. 30, 2017
Primary Examiner — Tuan Dao
o4
(51) Int. CL Assistant Examiner — William C Wood
GOGF 3/00 (2006.01) (74) Attorney, Agent, or Firm — L. Jeffrey Kelly
GO6F 9/44 (2006.01)
GO6F 9/48 (2006.01) (57) ABSTRACT
GO6E 13/00 (2006.01) A method for grouping of software components may be
GO6F 9/54 (2006.01)
provided. The method may comprise relating a trigger agent
(52) US. ClL) to a software component, identifying the trigger agent, and
CPC ...ccee. GO6F 8/7? (2013.01); GOGF 8/71 triggering a trigger message of the trigger agent to potential
. . (2.013'01)’ GOGF 9/542 (2013.01) other trigger agents. The method may also comprise moni-
(58) Field of Classification Search toring a response to the trigger message from at least one
None) other trigger agent related to at least one other software
See application file for complete search history. component, grouping the software components with the at
. least one other software component based on responses to a
(56) Ref Cited P P
eferences Cite

U.S. PATENT DOCUMENTS

8,010,947 B2
8,495,569 B2

8/2011 Carbone et al.
7/2013 Yoshimura et al.

group of software components, and relating the group of
software components to the software product based on
comparisons with a software catalog.

16 Claims, 4 Drawing Sheets

302
Relating a trigger agent to a software component.

I

304
Identifying the trigger agent.

!

306
Triggering a trigger agent message of software
component.

]

308
Monitoring trigger agent message and responses.

)

310
Grouping software components.

)

312
Relating the group of software components
to a software product.

U.S. Patent Jan. 23,2018 Sheet 1 of 4 US 9,875,095 B2

100

\

computer system

104
S
2 M T2
processing 110 cache e

unit 114
116 j

A 4
F 3

106 —~
4 I--__l.-__-l h 4
| grouping
llﬁ‘:. | system I 1122 network
I/0 interfaces ' 199 , adapter
- |
y 7'y 1 1
I |
118 external .
devices 120 display

FIG. 1

U.S. Patent Jan. 23,2018 Sheet 2 of 4 US 9,875,095 B2

202 control agent

A
’

,/ 222 inquiry response

,/ message

204 inquiry
message

”
-
”

I'd
212 broadcast message

206 trigger
agent A

208 trigger
agent B

216 response message

2062 SW
component A

208a SWwW
component B

214
broadcast
message

218 response

message

210 trigger
agent C

A

1:1 relationship

A 2

210a SW

220 trigger component C

agent D

N

1:1 relationship

h 4

220a SW
component D

FIG. 2

U.S. Patent Jan. 23,2018 Sheet 3 of 4 US 9,875,095 B2

300

\'
302

Relating a trigger agent to a software component.

\

304
Identifying the trigger agent.

306
Triggering a trigger agent message of software
component.

\

308
Monitoring trigger agent message and responses.

\

310
Grouping software components.

312
Relating the group of software components
to a software product.

FIG. 3

U.S. Patent Jan. 23,2018 Sheet 4 of 4 US 9,875,095 B2

400

\

402 Search for software component on the
system; if trigger agent responds, it is added to the list,
of identified trigger agents; if not — skipped.

€

A

404 Take a trigger agent file from the list and
trigger broadcast message.

A 4
406 Message is sent

to any other trigger agent.

408 Monitoring agent detects the response
from other trigger agents.

h 4

410 Wait pre-defined amount of time (i.e., 1 minute)

Y

412 Execute extinguish option on the file.

A

414 To each pulse component that has
responded the extinguish pulse is sent.

FIG. 4

US 9,875,095 B2

1
SOFTWARE BUNDLE DETECTION

BACKGROUND

The disclosure relates generally to a method for grouping
of software components, and more specifically, to a method
for grouping software components that relate as a group to
a software product. The disclosure relates further to a
grouping system for grouping of software components, and
a computer program product.

In today’s networked world software products are com-
posed of a plurality of separate components. Especially in
service oriented architecture (SOA) environments, software
functions and services may require a set of group of software
components interacting as an ensemble for delivering a
specific service. Thus, software products may be delivered
or shipped that include a plurality of software components.
Individual software components may be installable indepen-
dently from each other. Some components may be used by
different software products. Hence, they may only be
installed once for delivering the services to different soft-
ware products. One example may be a database component
which may be used for different purposes, as part of different
products and, in different configurations. Consequently, such
a database component may be a part of several different
software products.

However, traceability of individual software components
belonging to different software products may become a
problem. In particular if a complete map of the software
components and related software products should be gener-
ated, it may result in a confusing picture. Administrators
may face the task to manage the different software product
installations and ensure that software product license fees or
software product maintenance fees are paid correctly. This
may result in compliance issues. Administrators need to be
able to clearly relate software components to software
products and vice versa. One approach uses software tagging
and special functions in system management tools to aid in
software discovery, inventory, and asset management. How-
ever, administrators may be swamped by the different
options to identify and relate software components to soft-
ware products if many hundreds or many thousands of
endpoints like laptop computers, servers, mobile phones,
tablet computers, etc., need to be monitored so that all
software components may be found and mapped.

SUMMARY

According to one embodiment of the present invention, a
method for grouping of software components may be pro-
vided. The method may include relating a trigger agent to the
software component, identifying the trigger agent, triggering
a trigger agent message of the trigger agent, and monitoring
a response to the trigger agent message from at least one
other trigger agent related to at least one other software
component. Furthermore, the method may include grouping
the software component with the at least one other software
component based on the responses to a group of software
components, and relating the group of software components
to the software product.

According to another embodiment, a grouping system for
grouping of software components corresponding to a soft-
ware product may be provided. The grouping system may
include one or more processors, one or more computer-
readable storage devices, and a plurality of program instruc-
tions stored on at least one of the one or more storage
devices for execution by at least one of the one or more

20

25

30

35

40

45

50

55

60

65

2

processors. The plurality of program instructions include
program instructions to identify, by a control agent, a trigger
agent relating to a software component, program instruc-
tions to trigger, by the control agent, a trigger message of the
trigger agent, program instructions to monitor, by the control
agent, responses to said trigger message from at least one
other trigger agent related to at least one other software
component, program instructions to group the software
component with the at least one other software component
based on the responses to a group of software components
and program instruction to relate the group of software
components to the software product.

According to another embodiment, a computer program
product for grouping of software components corresponding
to a software product may be provided. The computer
program product includes a computer readable storage
medium having program instructions embodied thereon. The
program instructions are executable by a processor. The
program instructions relate a trigger agent to the software
component. The program instructions identify the trigger
agent. The program instructions trigger a trigger agent
message of the trigger agent. The program instructions
monitor the trigger agent message and corresponding
responses from at least one other trigger agent related to at
least one other software component. The program instruc-
tions group the software component with at least one other
software component based on the responses to a group of
software components and relate the group of software com-
ponents to the software product.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

For a more complete understanding of this disclosure,
reference is now made to the following brief description,
taken in conjunction with the accompanying drawings and
detailed description, wherein like reference numerals repre-
sent like parts.

FIG. 1 illustrates an exemplary computer system envi-
ronment operable for various embodiments of the disclo-
sure.

FIG. 2 illustrates the flow of messages and triggers from
the control agent to the trigger agents.

FIG. 3 illustrates a block diagram of an embodiment of an
algorithm for grouping software components.

FIG. 4 illustrates a more detailed flowchart of the algo-
rithm of FIG. 3 for grouping software components.

DETAILED DESCRIPTION

Although an illustrative implementation of one or more
embodiments is provided below, the disclosed systems and/
or methods may be implemented using any number of
techniques. This disclosure should in no way be limited to
the illustrative implementations, drawings, and techniques
illustrated below, including the exemplary designs and
implementations illustrated and described herein, but may
be modified within the scope of the appended claims along
with their full scope of equivalents.

FIG. 1 illustrates a block diagram of an exemplary com-
puter system (i.e., server) 100 operable for various embodi-
ments of the disclosure. As shown, the server 100 is only one
example of a suitable computer for implementing a grouping
system for detecting software bundles and is not intended to
suggest any limitation as to the scope of use or functionality
of embodiments of the disclosure described herein.

US 9,875,095 B2

3

The server 100 may be described in the context of
executable instructions, such as a program, or more specifi-
cally, an operating system (OS) 114 that is an aggregate of
program modules, components, objects, logic, or data struc-
tures, for example, being executed by the processing unit
102 to control the operation of the server 100. The grouping
system can be implemented as specialized related modules
116. However, in one embodiment the grouping system 199
may be implemented at least partially and optionally com-
pletely in hardware and may be a separate system which may
optionally be connected to the computer system/server 100.

As shown in FIG. 1, the components of the server 100
may include, but are not limited to, one or more processors
or processing units 102, a system memory 104, and a bus
106 that couples various system components, such as the
system memory 104, to the processing unit 102. System
memory 104 can include computer system readable media in
the form of volatile memory, such as random access memory
(RAM) 108 and/or cache memory 110. The server 100 may
further include other removable/non-removable, volatile/
non-volatile computer system storage media.

By way of example only, a storage system 112 can be
provided as one or more devices for reading from and
writing to a non-removable, non-volatile magnetic media,
such as a hard disk drive (HDD) or an optical disk drive such
as a CD-ROM, DVD-ROM. Each device of the storage
system 112 can be connected to bus 106 by one or more data
media interfaces. The OS 114, and one or more application
programs may be stored on the storage system 112 and
subsequently loaded into memory 104 for execution, as
needed.

The server 100 may also communicate with one or more
external devices 118 such as a keyboard, a pointing device,
a display 120, etc.; one or more devices that enable a user to
interact with the server 100; and/or any devices (e.g.,
network card, modem, etc.) that enable the server 100 to
communicate with one or more other computing devices.
Such communication can occur via I/O interfaces 114.

Server 100 may communicate with one or more networks
such as a local area network (LAN), a general wide area
network (WAN), and/or a public network (e.g., the Internet)
via network adapter 122.

It should be understood that although not shown, other
hardware and/or software components could be used in
conjunction with the server 100. Examples include, but are
not limited to: microcode, device drivers, redundant pro-
cessing units, external disk drive arrays, RAID systems, tape
drives, and data archival storage systems, etc.

Managing the multiple software bundles that may be
installed on a server 100 (FIG. 1) includes verifying whether
the software licenses that are associated with the software
bundles and/or software components are current and accu-
rate. One way of accomplishing this is to create a map of the
installed software components, thereby establishing a rela-
tionship among them and relating them to the software
bundles. In the current context, a software component may
include one or more program modules, such as the program
modules 116 (FIG. 1), cooperating to provide a program/
utility function (114 of FIG. 1). In some examples the
software component may operate independently to perform
a function, such as a word processing program. When
operating independently to perform a function, the software
component may also be referred to as a software product.
However, a software component may also be a building
block with other software components that are bundled
together to provide a software bundle. For example, a word
processing software product can be bundled together with a

20

25

30

35

40

45

50

55

60

65

4

database software product, a photo editor software product,
and other software products as necessary, to form a work
flow software bundle that a magazine publisher may pur-
chase. Hence, the group of interacting software products
may be referred to as software components when provided
as one software product that may also be referred to as a
software bundle. Further, a software product, such as a
database product, may be included as a software component
in more than one software bundle.

FIG. 2 illustrates the flow of messages and triggers from
the control agent 202 to the trigger components. Message
exchanges between trigger components 206, 208, 210 are
also shown. A control agent 202 is configured to monitor one
or more servers having software components that may be
associated with one or more software bundles. The control
agent 202 may identify the target servers to monitor, for
example, using a configuration file that includes entries to
uniquely identify each target server. An entry may include a
TCP/IP address, or a combination of TCP/IP address and
hostname. Each entry may further include a TCP/IP or UDP
port number through which control agent 202 messages are
sent and received. The control agent 202 configuration may
further include a catalog of software components, software
bundles, and files that are in scope for monitoring. The files
may be grouped by component or bundle. An expected
location, such as which server and directory, may be
included. The control agent 202 may be installed on a
separate workstation, server, or on one of the servers that are
being monitored.

Each monitored server may include a trigger agent, such
as trigger agents 206, 208, 210, and 220. Each trigger agent
listens for messages from the control agent 202, from other
trigger agents, and from the software components (i.e.,
206a, 208a, 210a, and 220q). There is a one-to-one rela-
tionship between the trigger agent and the trigger compo-
nent. Therefore, if several software components reside on a
target server, one trigger agent is configured per software
component to initiate and respond to messages from the
control agent and from other trigger agents that are also
configured for that software component. The messages
mimic the communication behavior of programs within a
software component, or of software components within a
software bundle. For example, a customer service represen-
tative initiating a session to view a customer record invokes
a web browser and enters the customer information. The
web browser is programmatically configured to initiate a
session with a customer service application that may per-
form initial processing, such as formatting the customer
information into a query, which it directs to a database to
retrieve the record. The control agent 202 and trigger agents
mimic this relationship by sending simple query messages,
similar to a “ping” command in TCP/IP for example, to
establish the existence and location of the programs within
the calling hierarchy. In this manner, the program calling
sequence to retrieve a customer record is established without
having to actually invoke the web browser, application, and
database. These query messages may include compiled
program code or a script. In this context, a script is a
program that is interpreted at run-time by a run-time envi-
ronment, rather than being compiled into object code that
can be stored in a binary form for later execution.

The control agent 202 communicates with the monitored
servers using several defined message types. Initially, the
control agent 202 sends an inquiry message 204 to trigger
agent A 206. The inquiry message 204 is configured to query
trigger agent A about the existence and directory location of
one or more files related to software component A 206a.

US 9,875,095 B2

5

Trigger agent A 206 responds with an inquiry response
message 222 to the control agent 202. After this identifica-
tion phase, the control agent 202 sends a broadcast message
to trigger agent A 206 to trigger a broadcast message 212,
214 to trigger agent B 208 and trigger agent C 210. As
shown, trigger agent B 208, which is aware of the files and
directories related to software component B 208a may
respond with the files and locations in a response message
216. Similarly, trigger component C 210 which is aware of
the files and directories related to software component C
210a may respond with the files and locations in a response
message 218.

It may be noted that only those trigger agents may respond
to the broadcast message 212, 214 that work in cooperation
and consequently belong to the same software product.
Another trigger agent 220 relating to a software component
D 220a may not respond to any broadcast message from
trigger agent A 206. Thus, only those trigger agents react to
a broadcast message that interact with each other and may
form a group to be identified as a software product.

By monitoring the message exchange between trigger
agent A 206 and trigger agent B 208 as well as between
trigger agent A 206 and trigger agent C 210, the control
agent 202 may group the trigger agents A, B, C—206, 208,
210, respectively—and related software components A, B,
C. This group may be related to a software product by a
comparison of the software components with a software
component library (not shown), or with the software com-
ponents defined as within scope.

As a final message from control agent 202, a distinguish
message (not shown) may be sent to all identified trigger
agents 206, 208, 210 which may have been identified as a
group of related software components 206a, 208a, 210a
belonging to a product may not respond to any further
broadcast messages from other trigger agents that may have
been activated by the control agent 220 by a broadcast
message.

FIG. 3 illustrates an algorithm 300 for identifying and
grouping software components. At 302, a trigger agent (i.e.,
206, 208, 210) which may be implemented as a script or
compiled program for mimicking the communication behav-
ior of the related software component to the software
component. At 304 the trigger agent is identified. This may
be done by sending an inquiry message 204 from a control
agent 202. An inquiry response message 222 may indicate to
the control agent 202 that the addressed file is a trigger
agent.

Furthermore, the method may include triggering, 306, a
trigger agent message. This may be the above-mentioned
broadcast message. The trigger agent message is monitored,
308, for at least one response from another trigger agent (i.e.,
206, 208, 210) related to at least one other software com-
ponent (2064, 208a, 2104a). At 310, based on the responses
from the trigger agents, the control agent 202 groups the
discovered files into one or more groups of software com-
ponents. At 312, the group of software components are
related to the software product.

According an embodiment of the present disclosure, the
trigger agent may be a script. However, alternate, equivalent
software components or hardware modules may be possible.
This may represent a light-weight implementation method.
Other implementation methods do not change the general
concept.

According to another embodiment of the present disclo-
sure, the trigger agent and the related software component
are stored in the same sub-directory of a file system. A direct
relationship of a software component and a related trigger

20

25

30

35

40

45

50

55

60

65

6

agent may be achieved by naming related triggers and files
with a common element, such as a prefix.

According to another embodiment of the present disclo-
sure, the trigger agents may be stored in different file
systems on different servers. Therefore software compo-
nents can be identified even if they may be used in a
distributed computing environment, i.e., different software
components of a software product are store on different
servers or systems.

According to another embodiment of the present disclo-
sure, triggering the trigger message of the trigger agent and
the corresponding responses are based on a network protocol
such as TCP/IP or UDP. In case of using the UDP protocol,
a lightweight protocol version may reduce potential over-
head generated by the messaging among the agents. In this
context, a lightweight protocol is a network protocol having
an architecture to reduce complexity in network packets
thereby increasing efficiency and transmission speed.

According to another embodiment of the present disclo-
sure, the trigger agent mimics a communication behavior of
the related software component. Therefore, the software
component does not need to be started. The trigger agent,
e.g., implemented as a script or another related software
program, mimics the communication reaction of the soft-
ware component through sending and receiving short trigger
messages. Thus, the messages sent from one trigger agent to
another are a placeholder communication which may be
monitored without an overhead of a fully active software
component.

In another embodiment, relating the group of software
components to the software product is based on comparing
elements of the group of software components with a
software catalog. In particular, software components that
have been identified by and that have been grouped together
may be compared to the software catalog which may relate
the group of software components to a specific software
product. Thus, software components found in a distributed
computing system comprising a plurality of servers with a
plurality of file systems and/or network attached storage
systems may be identified and grouped together without any
tagging of the software components.

In another embodiment, the trigger agent receives a
message, including an inquiry message, a response message,
a broadcast message, and an extinguish message from the
control agent. The inquiry message to a file found in the file
system may detect whether the file is a trigger agent or not.
If a trigger agent may be found, the control agent may send
a broadcast message to the identified trigger agent. This may
trigger a broadcast message from the trigger agent to poten-
tial other trigger agents. The extinguish message may put the
identified trigger agent which may have issued its broadcast
message asleep so that no circular broadcast messaging
activity may be triggered.

FIG. 4 shows a more detailed flowchart 400 of the
algorithm 300 of FIG. 3. It may be assumed that a control
agent may be part of the grouping system. At 402, the
control agent may search software components by identify-
ing files in a storage system. To each of the identified files
an inquiry message may be sent. If the file is a trigger agent,
the trigger agent may respond with an existence message
indicating to the control agent the existence of a trigger
agent. Consequently, in the context of this system, a related
software component exists. If the control agent receives such
an existence message, the control agent may add the related
software component to a list of found software components.
Otherwise, the control agent will continue with the next
found file in the storage system, e.g., in a file system.

US 9,875,095 B2

7

At 404, the control agent selects a trigger agent relating to
a software component and send a broadcast message to the
trigger agent. The trigger agent responds with a broadcast
message mimicking a communication behavior of the
related software component. This may mean that at 406 the
trigger agent may generate identical message constructs with
identical addressing schemes, e.g., port numbers, as from the
related software component. However, when the trigger
agent is a lightweight script (i.e., one designed to have a
small memory footprint) the discovery and messaging over-
head may be less impactful to overall system performance
compared to starting the software component and letting it
communicate.

As a next step, 408, the control agent or, a component of
the control agent which may be implemented as a monitor-
ing agent may monitor the network traffic. This way, the
broadcast message sent from the addressed trigger agent as
well as corresponding responses from other trigger agents
relating to other software components may be observed. The
control agent and/or monitoring agent may detect network
signals at predefined particular communication ports.

After waiting a pre-defined and configurable amount of
time, e.g., one minute, the control agent may send an
extinguish message to the originally selected trigger agent to
which the broadcast message has been sent (steps 410 and
412). This reduces the potential that trigger agent A will
react to a broadcast message from a trigger agent B if trigger
agent B is addressed by the control agent while issuing a
broadcast message. This way, an endless circling of the
software component grouping process may be prohibited.

At step 414, a distinguish message may be sent from the
control agent to each of the trigger agents that reacted to the
broadcast message sent from trigger agent A.

Thus, three different message may be sent from the
control agent to trigger agents: 1) an inquiry message for
determining that the identified file is a trigger agent based on
a response message from the trigger agent to the control
agent; 2) a broadcast message for triggering a broadcast
message for the identified trigger agent which mimics a real
communication behavior of the related software component
as a response to the received broadcast message from the
control agent; and 3) an extinguish message stopping
responses to received broadcast messages from other soft-
ware components if they have been triggered by a broadcast
message.

Various embodiments of the invention may be imple-
mented in a data processing system suitable for storing
and/or executing program code that includes at least one
processor coupled directly or indirectly to memory elements
through a system bus. The memory elements include, for
instance, local memory employed during actual execution of
the program code, bulk storage, and cache memory which
provide temporary storage of at least some program code in
order to reduce the number of times code must be retrieved
from bulk storage during execution.

Input/Output or /O devices (including, but not limited to,
keyboards, displays, pointing devices, DASD, tape, CDs,
DVDs, thumb drives and other memory media, etc.) can be
coupled to the system either directly or through intervening
1/0O controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers
or storage devices through intervening private or public
networks. Modems, cable modems, and Ethernet cards are
just a few of the available types of network adapters.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-

20

25

30

35

40

45

50

55

60

65

8

uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer

US 9,875,095 B2

9

readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

Although preferred embodiments have been depicted and
described in detail herein, it will be apparent to those skilled
in the relevant art that various modifications, additions,
substitutions and the like can be made without departing
from the spirit of the disclosure, and these are, therefore,
considered to be within the scope of the disclosure, as
defined in the following claims.

20

25

30

35

40

45

50

55

60

65

10

What is claimed is:
1. A method for grouping of software components corre-
sponding to a software product, said method comprising:
relating a trigger agent to said software component,
wherein relating said trigger agent to said software
component is based on configuring said trigger agent,
by a control agent, to initiate and respond to one or
more trigger agent messages from said control agent
and one or more secondary trigger agents associated
with at least one secondary software component;

identifying, by said control agent, said trigger agent,
wherein identifying said trigger agent further com-
prises said trigger agent receiving an inquiry message
from said control agent and communicating a response
message to said control agent, the response message
includes an addressed file associated with said trigger
agent;

triggering, by said control agent, said one or more trigger

agent messages of said trigger agent, wherein said
trigger agent message of said trigger agent is a script
mimicking communication behavior of said related
software component at run-time in a run-time environ-
ment;

monitoring a response to said trigger agent message from

at least one of said one or more secondary trigger
agents related to said at least one secondary software
component;

communicating an extinguish message to said one or

more secondary trigger agents, based on receiving a
response from said one or more secondary trigger
agents;
grouping said trigger agent and said one or more second-
ary trigger agents based on the monitored responses;

grouping said software components with said at least one
secondary software component based on said software
components related to said grouped trigger agent and
said at least one secondary software components asso-
ciated with said at least one grouped secondary trigger
agents; and

relating said group of software components to said soft-

ware product.

2. The method according to claim 1, wherein said trigger
agent and said related software component are stored in a
same sub-directory of a file system.

3. The method according to claim 1, wherein said trigger
agent and said at least one other trigger agent are stored in
different file systems on different servers.

4. The method according to claim 1, wherein said trig-
gering said trigger agent message of said trigger agent and
said corresponding responses are based on a network pro-
tocol.

5. The method according to claim 1, wherein said relating
said group of software components to said software product
is based on comparing elements of said group of software
components with a software catalog.

6. The method according to claim 1, wherein said trigger
agent receives a message selected out of the group compris-
ing an inquiry message, a broadcast message and an extin-
guish message.

7. The method according to claim 6, wherein said trigger
agent generates a response message after receiving said
broadcast message.

8. A grouping system for grouping of software compo-
nents corresponding to a software product, the grouping
system comprising:

one or more processors, one or more computer-readable

storage devices, and a plurality of program instructions
stored on at least one of the one or more storage devices

US 9,875,095 B2

11

for execution by at least one of the one or more
processors, the plurality of program instructions com-
prising:

program instructions to relate a trigger agent to said
software component, wherein program instructions to
relate said trigger agent to said software component is
based on program instructions to configure said trigger
agent, by a control agent, to initiate and respond to one
or more trigger agent messages from said control agent

5

. . 10
and one or more secondary trigger agents associated

with at least one secondary software component;

program instructions to identify, by a control agent, said
trigger agent, wherein program instructions to identity
said trigger agent further comprises said trigger agent
receiving an inquiry message from said control agent
and program instructions to communicate a response
message to said control agent, the response message
includes an addressed file associated with said trigger
agent;

program instructions to trigger, by the control agent, said

one or more trigger agent messages of said trigger
agent, wherein said trigger agent message of said
trigger agent is a script mimicking communication
behavior of said related software component at run-
time in a run-time environment;

program instructions to monitor, by the control agent,

responses to said trigger agent messages from at least
one of said one or more secondary trigger agents
related to said at least one secondary software compo-
nent;

program instructions to communicate an extinguish mes-

sage to said one or more secondary trigger agents,
based on receiving a response from said one or more
secondary trigger agents;

program instructions to group said trigger agent and said

one or more secondary trigger agents based on the
monitored responses;

program instructions to group said software component

with said at least one secondary software component
based on said software components related to said
grouped trigger agent and said at least one secondary
software components associated with said at least one
grouped secondary trigger agents; and

program instruction to relate said group of software

components to said software product.

9. The grouping system according to claim 8, comprising
a storage location, wherein said trigger agent and said
related software component are stored in a same sub-
directory of a file system.

10. The grouping system according to claim 8, wherein
said trigger agent and the at least one other trigger agent are
stored in different file systems on different servers.

11. The grouping system according to claim 8, wherein
communicating messages within said grouping system is
based on a network protocol.

12. The grouping system according to claim 8, wherein
the program instructions to group said group of software
components to said software product is based on comparing
elements of said group of software components with a
software catalog.

20

25

30

35

40

45

50

55

60

12

13. The grouping system according to claim 8, wherein
said control agent generates a message selected out of the
group comprising an inquiry message, a broadcast message
and an extinguish message.
14. The grouping system according to claim 13, wherein
said trigger agent initiates a response message after receiv-
ing a broadcast message from said control agent.
15. A computer program product for grouping of software
components corresponding to a software product, said com-
puter program product comprising:
a grouping system embodied on a computer readable
storage medium, the grouping system including pro-
gram instructions executable by a processor, the pro-
gram instructions comprising:
program instructions to relate a trigger agent to said
software component, wherein program instructions
to relate said trigger agent to said software compo-
nent is based on program instructions to configure
said trigger agent, by a control agent, to initiate and
respond to one or more trigger agent messages from
said control agent and one or more secondary trigger
agents associated with at least one secondary soft-
ware component;

program instructions to identify, by a control agent,
said trigger agent, wherein program instructions to
identify said trigger agent further comprises said
trigger agent receiving an inquiry message from said
control agent and program instructions to commu-
nicate a response message to said control agent, the
response message includes an addressed file associ-
ated with said trigger agent;

program instructions to trigger, by a control agent, said
one or more trigger agent messages of said trigger
agent, wherein said trigger agent message of said
trigger agent is a script mimicking communication
behavior of said related software component at run-
time in a run-time environment;

program instructions to monitor said trigger agent
message and corresponding responses from at least
one of said one or more secondary trigger agents
related to said at least one secondary software com-
ponent;

program instructions to communicate an extinguish
message to said one or more secondary trigger
agents, based on receiving a response from said one
or more secondary trigger agents;

program instructions to group said trigger agent and
said one or more secondary trigger agents based on
the monitored responses;

program instructions to group said software component
with said at least one secondary software component
based on software components related to said
grouped trigger agent and said at least one secondary
software components associated with said at least
one grouped secondary trigger agents; and

program instruction to relate said group of software
components to said software product.

16. The computer program product according to claim 15,
wherein the program instructions to group said group of
software components to said software product is based on
comparing elements of said group of software components
with a software catalog.

#* #* #* #* #*

	Bibliography
	Drawings
	Description
	Claims

