
III III 0 II0 1101 III 0I 100 III III III II 0I II
US009354937B2

(12) United States Patent
Habdank et al.

(10) Patent No.: US 9,354,937 B2
(45) Date of Patent: May 31, 2016

(54) SYSTEM AND METHOD FOR ELECTRONIC

WORK PREDICTION AND DYNAMICALLY

ADJUSTING SERVER RESOURCES

(71) Applicant: Thomson Reuters Global Resources

(TRGR), Baar (CH)

(72) Inventors: Jozef Habdank, Charlottenlund (DK);

Tadeusz Habdank-Wojewodzki,

Cracow (PL)

(73) Assignee: THOMSON REUTERS GLOBAL

RESOURCES, Baar (CH)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/335,771

(22) Filed: Jul. 18, 2014

(65) Prior Publication Data

US 2016/0019094A1 Jan. 21, 2016

(51) Int.Cl.

G06F 9/455 (2006.01)

G06F 9/50 (2006.01)

(52) U.S. Cl.

CPCG06F 9/505 (2013.01); G06F 9/5061

(2013.01); G06F 9/5083 (2013.01); GO6F

2209/5019 (2013.01)

(58) Field of Classification Search

USPC ..718/1, 100-107

IPCGO6F 9/505,9/54, 9/5061

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,993,458 Bi 1/2006 Castelli etal.
7,058,949 Bi * 6/2006 Wi!!en etal. 718/104
7,095,841 B2 * 8/2006 Mu!!en 379/265.1
7,140,022 B2* 11/2006 Binns 718/105
7,302,685 B2 * 11/2007 BinnsG06F 9/4887

370/415

7,765,554 B2 * 7/2010 Muso!!GO6F 9/461
7 18/103

7,958,507 B2 * 6/2011 SantosGO6F 9/4887
7 18/100

8,108,844 B2 * 1/2012 Crutchfie!dGO6F 8/443
7 17/136

8,448,170 B2 * 5/2013 Wipfe!HO4L 9/3213
7 18/1

8,468,538 B2 * 6/2013 AttardeGO6F 3/0613
709/233

8,499,301 B2 * 7/2013 EdwardsHO4M 3/5237
7 18/104

8,549,521 B2 * 10/20 13 BrokenshireGO6F 9/4843
709/226

8,966,493 Bi * 2/2015 RichardsGO6F 9/4887
7 18/104

8,984,519 B2 * 3/2015 CadambiGO6F 9/505
7 18/103

8,997,107 B2 * 3/2015 Jam............................GO6F 9/46
709/223

2012/0089726 Al 4/2012 Doddavu!a
2013/0304903 Al 11/2013 Micketal.

OTHER PUBLICATIONS

Jayram et a!, "On!ine Server A!!ocation in a Server Farm via Benefit
Task Systems", ACM, pp. 540-549, 2001.*

Jin eta!, "BAR: An Efficient Data Loca!ity Driven Task Schedu!ing
A!gorithm for C!oud Computing", IEEE, pp. 295-304, 2011.*

(Continued)

Primary Examiner Anil Khatri

(74) Attorney, Agent, or Firm Faegre Baker Daniels LLP

(57) ABSTRACT

A computer-implemented system and method facilitate
dynamically allocating server resources. The system and
method include determining a current queue distribution, ref-
erencing historical information associated with execution of
at least one task, and predicting, based on the current queue
distribution and the historical information, a total number of

tasks of various task types that are to be executed during the

time period in the future. Based on this prediction, a resource

manager determines a number of servers that should be

instantiated for use during the time period in the future.

19 Claims, 4 Drawing Sheets

4OO-

DETERMINE CURRENT QUEUI

DETERMINE PRIOR TASK

DETERMINE PRIOR TASK

VALUE

PRED!CI TOTAL NUMBER Of

DURING TIME PERIOD

DETERMINE CURRENT

NUMBER OF iNSTANTIATED
SERVERS

BACK3G

CONSUMPTON Part

.1
ESTIMATE AVERaGE

MAXIMUM TASK
CONSUMPTION ER SERVER

DETERMINE TOTAL NUMBER

DURING TIME PERIOD

NUMBER OF SERVERS

US 9,354,937 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Burmester et a!, "Making Mechatronic Agents Resourceaware in

order to Enable Safe Dynamic Resource Allocation" ACM, pp. 175-

183, 2004.*

Matsui et al, "Distributed Cooperative Optimization on Cluster
Trees", IEEE, pp. 38-45, 2013.*

Buzen, "Computational Algorithms for Closed Queueing Networks
with Exponential Servers", Communications of the ACM, vol. 16,
No.9, pp. 527-531, 1973.*

Keller et a!, "Response Time-Optimized Distributed Cloud Resource
Allocation ", ACM, pp. 47-52, 2014.*

Raz et a!, "Fair Operation of MultiServer and MultiQueue Systems",
ACM, pp. 382-383, 2005.*

Maguluri et a!, "Scheduling Jobs With Unknown Duration in Clouds"
IEEE/ACM Transactions on Networking, vol. 22, No. 6, pp. 1938-
1951, 2014.*

International Search Report and the Written Opinion of the Interna-
tional Searching Authority. International Application No. PCT/
IB2O15/055200. International Filing Date: Jul. 9, 2015. 10 pages.

* cited by examiner

U.S. Patent May 31, 2016 Sheet 1 of 4

100—a.'

J WORKER J WORKER
I SERVER I SERVER

NETWORK

MANAGEMENT SERVER

112H
PROCESSOR

MEMORY

116 SYSTEM MANAGER

102

12O TASK SCHEDULER
114 1

118'1 DATABASE

108 RESOURCE MANAGER

US 9,354,937 B2

J WORKER104
SERVER

106

F G 1

U.S. Patent May 31, 2016 Sheet 2 of 4 US 9,354,937 B2

200

DETERMINE A CURRENT OUEUE

D STR BUTON

REFERENCE HSTORCAL NFORMATON

PREDCTA TOTAL NUMBER OF TASKS TO BE

EXECUTED N ATME PERIOD

EST MATE A MAXMUM SERVER

CONSUMPTION

DETERMNE A NUMBER OF SERVERS TO

ALLOCATE FOR THE TIME PERIOD

202

204

206

210

ADD OR REMOVE SERVERS PROR TO THE

TIME PERIOD TO ALLOCATE THE DETERMNED 212

NUMBER OF SERVERS

F G 2

U.S. Patent May 31, 2016 Sheet 3 of 4 US 9,354,937 B2

314

P32o /

308

SERVER COUNT ESIIMATOR

~n ,t304

300 -

HG. 3

U.S. Patent

4OO-

May 31, 2016 Sheet 4 of 4 US 9,354,937 B2

DETERMINE CURRENT QUEUE
D STRI BUTI ON

DETERMINE HISTORICAL

BACKLOG
DETERMINE PRIOR TASK

CREATION RATE

DETERMINE HISTORICAL TASK

CONSUMPTION RATE
DETERMINE PRRJR TASK

EXECUTION PREDICTION 406
VALUE

ESTIMATE AVERAGE

MAXIMUM TASK -416
CONSUMPTION PER SERVER

PREDICT TOTAL NUMBER OF

TASKS TO BE EXECUTED —408
DURING TIME PERIOD

DETERMINETOTAL NUMBER

OF SERVERS TO ALLOCATE 418
DURING TIME PERIOD

DETERMINE CURRENT

NUMBER OF INSTANTIATED 410
SERVERS

ALLOCATE DETERMINED

NUMBER OF SERVERS

US 9,354,937 B2
1

SYSTEM AND METHOD FOR ELECTRONIC
WORK PREDICTION AND DYNAMICALLY

ADJUSTING SERVER RESOURCES

BACKGROUND

To aid in the allocation of server resources for future time
periods, one or more algorithms are typically used for pre-
dicting future system loads. These predictions generally are
based solely on historical data such as, for example, previous 10

system loads, server operations, and the like. This conven-
tional approach is suited for predicting regularly scheduled
task executions.

SUMMARY 15

Embodiments of the present invention facilitate dynami-
cally allocating server resources by using information about
scheduled task executions, as well as historical information,
to predict future system loads. In embodiments, aspects of 20
embodiments of the invention may be combined with
resource managers that add and remove servers. As the term is
used herein, servers may refer to computing devices, soft-
ware, firmware, virtual machines, and/or the like. Embodi-
ments of the invention may facilitate more precise and effi- 25
cient server resource allocation. For example, by
implementing embodiments ofthe invention, a resource man-
ager may be able to predict that 30 minutes from the time of
predicting, there will be 12,000 new task executions sched-
uled, 50 minutes from the time of predicting, there will be 30
17,000 new task executions scheduled, 70 minutes from the
time of predicting, there will be 8,000 new task executions
scheduled, and the like. Using these estimates, the resource
manager may predict how many servers should be allocated
during those time periods to perform the executions such as, 35
for example, by determining that 30 minutes from the time of
predicting, the system should have 80 instantiated servers, 50
minutes from the time of predicting, the system should have
120 instantiated servers, 70 minutes from the time of predict-
ing, the system should have 60 instantiated servers, and the 40
like.
Embodiments of the invention include a computer-imple-

mented method for dynamically allocating server resources,
the method including determining a current queue distribu-
tion. The current queue distribution may include, for 45
example, a number of times that one or more tasks, each
having a task type from a set of task types, are scheduled to be
executed within a time period in the future, where the current
queue distribution is associated with the task types of the one
or more tasks. Embodiments of the method further include 50
referencing historical information associated with one or
more prior executions of at least one task of each task type
associated with the current queue distribution and predicting,
based on the current queue distribution and the historical
information, a total number of tasks of each task type associ- 55
ated with the current queue distribution that are to be executed
during the time period in the future. In embodiments, the total
number of tasks of each task type associated with the current
queue distribution includes at least one task execution that is
predicted to be scheduled before the time period begins. 60
Embodiments of the method also include estimating an aver-
age maximum task consumption per server for each task type
associated with the current queue distribution and determin-
ing a total number of servers to allocate during the time
period. 65

Embodiments of the invention also include a scalable, dis-
tributed server system for performing tasks. Embodiments of

the system include a plurality of worker servers, each corifig-
ured to execute one or more tasks; and a management server
configured to allocate server resources. In embodiments, the
management server includes a processor that instantiates a
plurality of software components stored in a memory.
According to embodiments, the plurality of software compo-
nents includes a task scheduler configured to schedule at least
one execution of each of the one or more tasks; a task queue
configured to store an indication of the at least one scheduled
execution ofthe one or more tasks; and a resource manager. In
embodiments, the resource manager is configured to (1)
determine a current queue distribution, wherein the current
queue distribution comprises a number of times that each of
the one or more tasks, each having a task type from a set of
task types, is scheduled to be executed within a time period
that begins in the future, where the current queue distribution
is associated with the task types of the one or more tasks; (2)
reference historical information associated with one or more
prior executions of at least one task of each of the task types
associated with the current queue distribution; and (3) deter-
mine, based on the current queue distribution and the histori-
cal information, a number of servers to allocate during the
time period.
Embodiments of the invention include another computer-

implemented method for dynamically allocating server
resources. The method may include determining a current
queue distribution, where the current queue distribution
includes a number of times that one or more tasks, each
having a task type from a set of task types, are scheduled to be
executed within a time period in the future, where the current
queue distribution is associated with the task types of the one
or more tasks. Embodiments of the illustrative method
include referencing historical information associated with
one or more prior executions of at least one task of each task
type associated with the current queue distribution. The
method may also include predicting, using a nonlinear esti-
mator that takes, as input, the current queue distribution and
the historical information, a total number of tasks of each task
type associated with the current queue distribution that are to
be executed during the time period in the future and estimat-
ing an average maximum consumption per server for each
task type associated with the current queue distribution. Esti-
mating the average maximum consumption per server may
include optimizing a function configured to facilitate deter-
mining a maximum consumption that minimizes backlog.
The illustrative method also includes determining a total
number of servers to allocate during the time period.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating an operating environ-
ment (and, in some embodiments, aspects of the present
invention) in accordance with embodiments of the present
invention;
FIG. 2 is a flow diagram depicting an illustrative method of

dynamically allocating server resources in accordance with
embodiments of the present invention;
FIG. 3 is a schematic diagram depicting an illustrative

method of determining a number of servers to allocate during
a time period in accordance with embodiments of the present
invention; and
FIG. 4 is a flow diagram depicting another illustrative

method of dynamically allocating server resources in accor-
dance with embodiments of the present invention.
While the present invention is amenable to various modi-

fications and alternative forms, specific embodiments have
been shown by way of example in the drawings and are

US 9,354,937 B2
3

described in detail below. The present invention, however, is
not limited to the particular embodiments described. On the
contrary, the present invention is intended to cover all modi-
fications, equivalents, and alternatives falling within the
ambit of the present invention as defined by the appended
claims.
Although the term "block" may be used herein to connote

different elements illustratively employed, the term should
not be interpreted as implying any requirement of, or particu-
lar order among or between, various steps disclosed herein
unless and except when explicitly referring to the order of
individual steps.

DETAILED DESCRIPTION

Embodiments of the present invention relate to dynamic
allocation of server resources in systems that distribute sched-
uled executions of tasks across multiple servers. Embodi-
ments ofthe invention facilitate allocation of server resources
for task executions during a time period in the future by using
information from a task execution queue combined with his-
torical information to predict the load of the system during the
time period (e.g., the estimated number of task executions
expected to be performed during the time period). In embodi-
ments, this predicted system load may be used to determine
the server resources that should be allocated to handle that
load during the time period. Aspects of embodiments of the
invention may be implemented with any number of systems
that distribute server-based task executions such as, for
example, embodiments of the system described in U.S. appli-
cation Ser. No. 14/132,968 to JozefHabdank et al., entitled
"SYSTEM AND METHOD FOR DYNAMICALLY
SCHEDULING NETWORK SCANNING TASKS," filed
Dec. 18, 2013, the entirety of which is hereby incorporated
herein by reference.
FIG. 1 depicts an example of an operating environment 100

(and, in some embodiments, aspects of the present invention)
in accordance with embodiments of the present invention. In
embodiments, the operating environment 100 may be,
include, or be included in, a scalable, distributed server sys-
tem configured to perform server-based tasks. As shown in
FIG. 1, the operating environment 100 includes a manage-
ment server 102 that manages, adds, and/or removes worker
servers 104, which are configured for executing tasks. In
embodiments, the management server 102 is confgured to
allocate server resources (e.g., hardware resources, software
resources, and/or a combination thereof). In embodiments,
the management server 102 and/or the worker servers 104
may communicate via a network 106. The network 106 may
be, or include, any number of different types of communica-
tion networks such as, for example, a bus network, a short
messaging service (SMS), a local area network (LAN), a
wireless LAN (WLAN), a wide area network (WAN), the
Internet, a P2P network, custom-designed communication or
messaging protocols, and/or the like. The network 106 may
include a combination of multiple networks.
According to embodiments, the management server 102

implements a resource manager 108 that uses historical infor-
mation and information about tasks that are currently sched-
uled for execution during a time period in the future to
dynamically allocate server resources for executing tasks dur-
ing the time period by predicting a total number of task
executions to be performed during the time period. A time
period in the future refers to a time period that occurs (e.g.,
begins) later in time than the time at, or around, which the
system, or an aspect of the system, makes a determination,
prediction, and/or the like, associated with the time period in

the future. Similarly, "current" may refer to the time at, or
around, which the system, or an aspect of the system, makes
the determination, prediction, and/or the like.
The resource manager 108 may utilize information

5 obtained about a current queue distribution associated with
one or more task execution queues 110, as well as historical
information associated with previous executions of tasks of
certain task types, to facilitate dynamic allocation of server
resources for executing the tasks during a future time period.

10 The information may include a number of task executions
scheduled for the time period, types of tasks scheduled, and/
or the like. Dynamically allocating server resources may
include adding and/or removing worker servers 104, assign-
ing certain task executions to certain worker servers 104,

15 and/or the like.
As shown in FIG. 1, the management server 102 may be

implemented on a computing device that includes a processor
112 and a memory 114. Although the management server 102
is referred to herein in the singular, the management server

20 102 may be implemented in multiple server instances (e.g., as
a server cluster), distributed across multiple computing
devices, instantiated within multiple virtual machines, and/or
the like. The resource manager 108 may be stored in the
memory 114. In embodiments, the processor 112 executes the

25 resource manager 108, which may facilitate dynamic server
resource allocations for executions of a task or tasks.
Still referring to FIG. 1, the management server 102

includes a system manager 116 that manages operations of
the worker servers 104. The worker servers 104 may be

30 implemented using any number of different computing
devices. For example, the management server 102 and the
worker servers 104 may be included within a server cluster
implemented using a single computing device, multiple com-
puting devices, one or more virtual machines, and/or the like.

35 In embodiments, the system manager 116 may be, include, be
included in, and/or integrated with the resource manager 108,
and may provide functions such as allocating resources (e.g.,
assigning particular scanning tasks and/or scanning task
executions to particular worker servers 104, collecting and

40 analyzing server performance feedback information, scaling
the number of worker servers 104 available for tasks, and/or
the like), facilitating user input (e.g., providing interfaces for
creating scanning tasks, managing operations ofvarious com-
ponents of the service, and/or the like), and/or facilitating

45 system maintenance.
In embodiments, each worker server 104 is configured to

perform one or more executions of one or more tasks, where
each of the tasks has a task type from a set of task types. In
embodiments, the system manager 116 may assign task types

50 to tasks based on any number of different categorization
schemes and may store information associated with task type
assignments, task executions and scheduling, portions of the
information, and/or data extracted from the information in the
memory 114 and may, for example, index the information

55 using a database 118. The database 118 may be, or include,
one or more tables, one or more relational databases, one or
more multi-dimensional data cubes, one or more non-rela-
tional databases, and/or the like. Further, though illustrated as
a single component implemented in the memory 114, the

60 database 118 may, in fact, be a plurality of databases 118 such
as, for instance, a database cluster, which may be imple-
mented on a single computing device or distributed among a
number of computing devices, memory components, or the
like.

65 In operation, a task scheduler 120 schedules executions of
tasks such as, for example, by placing an indication thereof in
a time-based queue 110. The system manager 116 may be

US 9,354,937 B2
5

configured to determine which of the worker servers 104 will
perform each task execution, thereby facilitating dynamic
load-balancing. Additionally, the system manager 116 may
be configured to add or remove servers to facilitate dynamic
resource allocation. For example, the system manager 116
may be confgured to open and/or close connections to server
devices, remotely power-up and/or power-down server
devices, instantiate and/or delete server instances, create and]
or destroy virtual machines and/or the like.
According to embodiments, various components of the

operating environment 100, illustrated in FIG. 1, may be
implemented on one or more computing devices. A comput-
ing device may include any type of computing device suitable
for implementing embodiments of the invention. Examples of
computing devices include specialized computing devices or
general-purpose computing devices such "workstations,"
"servers," "laptops," "desktops," "tablet computers," "hand-
held devices," and the like, all of which are contemplated
within the scope of FIG. 1 with reference to various compo-
nents of the operating environment 100.

In embodiments, a computing device includes a bus that,
directly and/or indirectly, couples the following devices: a
processor, a memory, an input/output (I/O) port, an I/O com-
ponent, and a power supply. Any number of additional com-
ponents, different components, and/or combinations of com-
ponents may also be included in the computing device. The
bus represents what may be one or more busses (such as, for
example, an address bus, data bus, or combination thereof).
Similarly, in embodiments, the computing device may
include a number of processors, a number of memory com-
ponents, a number of I/O ports, a number of I/O components,
and/or a number of power supplies. Additionally any number
of these components, or combinations thereof, may be dis-
tributed and/or duplicated across a number of computing
devices.

In embodiments, the memory 114 includes computer-read-
able media in the form of volatile and/or nonvolatile memory
and may be removable, nonremovable, or a combination
thereof Media examples include Random Access Memory
(RAM); Read Only Memory (ROM); Electronically Erasable
Programmable Read Only Memory (EEPROM); flash
memory; optical or holographic media; magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic stor-
age devices; data transmissions; or any other medium that can
be used to store information and can be accessed by a com-
puting device such as, for example, quantum state memory,
and the like. In embodiments, the memory 114 stores com-
puter-executable instructions for causing the processor 112 to
implement aspects of embodiments of system components
discussed herein and/or to perform aspects of embodiments
of methods and procedures discussed herein. Computer-ex-
ecutable instructions may include, for example, computer
code, machine-useable instructions, and the like such as, for
example, program components capable of being executed by
one or more processors associated with a computing device.
Examples of such program components include the resource
manager 108, the system manager 116, the database 118, and
the task scheduler 120. Program components may be pro-
grammed using any number of different programming envi-
ronments, including various languages, development kits,
frameworks, and/or the like. Examples of such environments
may include, for example, R, C#.Net, T-SQL, and/or the like.
Some or all of the functionality contemplated herein may also
be implemented in hardware and/or firmware.
The illustrative operating environment 100 shown in FIG.

1 is not intended to suggest any limitation as to the scope of
use or functionality of embodiments of the present invention.

6
Neither should the illustrative operating environment 100 be
interpreted as having any dependency or requirement related
to any single component or combination of components illus-
trated therein. Additionally, any one or more of the compo-

5 nents depicted in FIG. 1 may be, in embodiments, integrated
with various ones of the other components depicted therein
(and/or components not illustrated), all of which are consid-
ered to be within the ambit of the present invention. For
example, the resource manager 108 may be integrated with

10
the system manager 116.
As described above, in embodiments, a resource manager

(e.g., the resource manager 108 depicted in FIG. 1) may
utilize information associated with task executions that are

15
scheduled for a time period in the future to facilitate dynami-
cally allocating server resources forperforming executions of
the task or tasks. FIG. 2 depicts an illustrative method 200 for
dynamically allocating server resources by using, for
example, a management server (e.g., the management server

20 102 depicted in FIG. 1), a resource manager (e.g., the
resource manager 108 depicted in FIG. 1), a system manager
(e.g., the system manager 116 depicted in FIG. 1), and/or one
or more worker servers (e.g., the worker servers 104 depicted
in FIG. 1). The management server may manage the functions

25 performed by a number of worker servers to facilitate load-
balancing with respect to large numbers of tasks. In embodi-
ments, functions that could be performed by the worker serv-
ers may be performed by the management server, additionally
or in lieu thereof According to embodiments, tasks may be

30 created by a user or users, an automated process or processes,
and/or the like. A task may be provided, for example, to a task
scheduler (e.g., the task scheduler 120 depicted in FIG. 1)
and, upon receiving the task, the task scheduler may schedule
the task for execution at an execution time by placing the task

35 (or an indication of the task and/or the scheduled execution)
in a task queue (e.g., the task queue 110 depicted in FIG. 1),
which may be, for example, a unique time queue.
As shown in FIG. 2, embodiments of the illustrative

method 200 include determining a current queue distribution
40 (block 202). The current queue distribution refers to a distri-

bution associated with scheduled task executions. For
example, a current queue distribution may refer to a distribu-
tion of task types among a number of scheduled task execu-
tions. The current queue distribution may include a number of

45 times that one or more tasks, each having a task type from a
set of task types, is scheduled to be executed within a time
period in the future. In embodiments, the time period may
include, for example, a time that begins at least about 30
minutes in the future (i.e., about 30 minutes from the time that

50 a particular prediction, determination, measurement, and/or
the like is made) and may include any desired range of time
(e.g., 30 seconds, 1 minute, 30 minutes, and/or the like).
Additionally, according to embodiments, task types may
include any number of different designations of types of tasks

55 that may be performed by worker servers such as, for
example, web crawling task types, cloud-based computa-
tional task types, network scanning task types, and/or the like.
Embodiments of the illustrative method 200 include refer-

encing historical information associated with one or more
60 prior executions of at least one task of each task type associ-

ated with the current queue distribution (block 204) and pre-
dicting a total number of tasks to be executed during a time
period in the future (block 206). The total number of tasks to
be executed during the time period in the future may be

65 predicted based on the current queue distribution and the
historical information, and include a prediction associated
with task executions that are not scheduled at the time of the

US 9,354,937 B2

7
predicting but that are predicted to be scheduled before the
time period begins and/or during the time period.
According to embodiments, predicting the total number of

tasks to be executed during the time period may include
providing inputs (e.g., a prior task creation rate, a prior pre-
diction value, and/or the like) to a nonlinear estimator. In
embodiments, the nonlinear estimator may be configured to
transform one or more of the inputs based on one or more
assumptions. The nonlinear estimator may be, or include, a
nonlinear time series statistical model such as, for example,
an autoregressive-moving-average with exogenous inputs
estimator (ARMAX), a Hammerstein-Wiener estimator, and]
or the like.
As shown in FIG. 2, the method 200 further includes esti-

mating a maximum server consumption per server for each
task type associated with the current queue distribution
(block 208) and determining a number of servers to allocate
for the time period (block 210). In embodiments, estimating
an average maximum task consumption per server may
include determining a current number of instantiated servers,
determining an historical backlog, determining an historical
task consumption rate, and providing the inputs to another
nonlinear estimator. In embodiments, the nonlinear estimator
may be configured to optimize a function that defines a rela-
tionship between backlog and consumption. In embodiments,
maximum server consumption may be measured in other
ways such as, for example, maximum task consumption per
server for all task types, maximum task consumption per task
type for all servers, and/or the like. As shown in FIG. 2,
embodiments of the method 200 further include adding or
removing servers prior to the time period so as to allocate the
determined number of servers (block 212).
FIG. 3 is a schematic diagram depicting an illustrative

process flow 300 for dynamically allocating server resources.
The functions depicted in FIG. 3 and discussed below may
represent computer algorithms implemented as computer-
executable instructions and may be configured as program
components, software modules, and/or the like. As shown in
FIG. 3, embodiments of the illustrative process flow 300
include a server count estimator 302 that determines a num-
ber, S, (304), of servers to be allocated during a particular
time period. The server count estimator 302 determines the
number, S, (304), of servers based on a number of inputs,
some of which may be generated using one or more task
estimators 306, 308.
According to embodiments, any number of task estimators

306, 308 may be used. For example, in embodiments, a first
task estimator 306 may be used to generate inputs associated
with a first task and/or task type, a second task estimator (not
shown) may be used to generate inputs associated with a
second task and/or task type, and an mth task estimator 308
may be used to generate inputs associated with an mth task
and/or task type. In embodiments, a separate task estimator
306, 308 may be used for each particular task, each task type,
specified time periods, and/or the like. In FIG. 3 and the
accompanying description, the example is described in the
context of a number of task estimators, each configured to
generate inputs associated with a unique task type. This
example is used for purposes of clarity only, and embodi-
ments of the process depicted in FIG. 3 may be implemented
in the context of a single task estimator and/or task estimators
configured to generate inputs associated with other categories
of information, as described above. Additionally, although
the task 1 estimator 306 is illustrated, and described in further
detail below, it should be understood that any number of
different aspects of the described detail may be similarly

8
applicable to any number of additional task estimators such
as, for example, the task m estimator 308.
As shown in FIG. 3, the task 1 estimator 306 includes a load

predictor 310 and a maximum consumption estimator 312.
5 The load predictor 310 may be configured to predict the total

number of task executions of each task type to be performed
during the time period. In embodiments, the load predictor
310 makes this prediction by determining at least one input
that includes at least one of a prior task creation rate and a

10 prior prediction value. In embodiments, the load predictor
310 may be, or include, a nonlinear estimator. The nonlinear
estimator may take any number of different forms and be
configured according to any number of different confgura-
tions. For example, the first nonlinear estimator may be con-

15 figured to transform one or more inputs based on one or more
assumptions such as, for example, an assumed downward
bias that increases with time, an increasing variance, and/or
the like. According to various embodiments, the load predic-
tor 310 may be, or include, a nonlinear time series statistical

20 model such as, for example, an autoregressive-moving-aver-
age with exogenous inputs estimator (ARMAX), a Hammer-
stein-Wiener estimator, and/or the like.
As shown in FIG. 3, the load predictor 310 takes, as input,

one or more prior task creation rates, x1 . . . x, (314), associ-
25 ated with tasks of the first task type, a current number, E1
E, (316), of task executions of the first task type scheduled in
the queue (which may actually be several values, reflecting
the number of tasks in the queue at each of several recent
points in time), and one or more prior prediction values,

30 yl .. . y, (318), oftask executions. The prior task creation rate
or rates, x1 . . . x, (314), may include, for example, a rate of
task execution scheduling for one or more historical time
periods, an average task execution scheduling rate, and/or the
like. The current number, E1 . . . E, (316), of tasks of the first

35 task type in the queue may be determined from a current
queue distribution, which, as described above, may include a
number of times that one or more tasks, each task having a
task type from a set oftask types, are scheduled to be executed
within a time period in the future. Additionally, the prior

40 prediction value or values, yl . . . y, (318), of task executions
may include previously predicted values indicating predicted
numbers of task executions to be scheduled (i.e., previous
outputs from the load predictor 310).
As shown in FIG. 3, the load predictor 310 utilizes the

45 inputs 314 and 316 to predict a total number, 5 (318), oftasks
of the first task type that are to be executed during the time
period. In embodiments, for example, the load predictor 310
may include a nonlinear estimator of the following form:

50
x_ y 1 E); where

x, . . . are prior rates of task execution scheduling;
Y,_1 . . . are prior and future values of prediction;

are the partial future information about execu-
tions, or an execution distribution in a time queue; and

55 5 is the estimated total number of task executions to be
performed during the time period.

According to embodiments, the expression .. . E, may
be nonlinearly transformed under the following assumptions:
the expression has a downward bias, the downward bias is

60 increasing with time, and the range of the values of .

changes at every iteration.
As shown in FIG. 3, the maximum consumption estimator

312 utilizes inputs 322, 324, and 326 to estimate an average
maximum task consumption per server, ê (328), for the first

65 task type. That is, the maximum consumption estimator 312
estimates a maximum number of tasks of the first task type
that a server (e.g., a worker server 104 depicted in FIG. 1) can

US 9,354,937 B2

9
perform in a given time period. As shown in FIG. 3, the
maximum consumption estimator 312 takes, as input, a cur-
rent number, S (322), of instantiated servers.Additionally, the
maximum consumption estimator 312 takes, as input, one or
more values associated with historical consumption, c1 . . . c, 5

(324), of tasks of the first task type, and one or more values
associated with historical backlog, b1 .. . b, (326), of tasks of
the first task type. The historical consumption, c1 . . . c, (324),
may include, for example, a number of executions of tasks of
the first task type performed during one or more historical

10

time periods. In embodiments, the historical consumption,
c1 .. . c, (324), may be determined for a single worker server,
for a specified number of worker servers, and/or indepen-
dently of the number of worker servers. The historical back-

15
log, b1 . . . b, (326), may include, for example, a number of
task executions that were scheduled for a prior time period
that failed to execute on time as a result of insufficient server
resources.

In embodiments, the maximum consumption estimator
312 may be, include, or otherwise utilize, a nonlinear estima-
tor. The nonlinear estimator may be configured to optimize a
function that defines a relationship between backlog and con-
sumption. For example, the maximum consumption estima-
tor 312 may be a nonlinear estimator that takes the following
form:

c g(S, b ... c . . . c_,); where

S, is a current number of instantiated servers;
b,.. . b,_ is an historical backlog, defined as a number of

scheduTed executions that weren't performed due to
insufficient server resources;

c, . . . is an historical average task consumption rate
per server; and

ê, is an estimated maximum consumption rate per server.
According to embodiments, the estimator may be confgured
to optimize the following function:

g =max((1
+br)'

where u is a positive constant parameter.
The parameter, u, sets the curvature of the graph and may be
selected, for example, to generate a slower or faster response,
as desired. As can be seen from the illustrative function, the
estimator may be configured to find a maximum consumption
while maintaining backlog as close to zero as possible. In this
manner, the resource manager may allocate as few resources
as possible while minimizing backlog.
As described above, the server count estimator 302 takes,

as input, the average maximum consumption per server, ê,
(328), for the first task type, the predicted total number, 5
(320), of executions of tasks of the first task type, and any
number of other similar values, ê, (330) and (332), as
generated by additional task estimators 308. Additionally, as
shown in FIG. 3, the server count estimator 302 may take, as
input, the current number, 5 (322), of instantiated servers.
According to embodiments of the example described above,
the server count estimator may, for example, be a function of
the following form:

I Yi, Y2, Ym,
S =max

S1 1 S2 2 Sm m

where
S, is a predicted number of servers required to be allocated
for the particular time period and the operation desig-

10
nated by the brackets provides the closest integer higher
than the number in the brackets; and m is a number of
task types.

According to embodiments, the function is confgured to find
the maximum number of required servers in the set of outputs
coming from all task estimators.
The illustrative process 300 shown in FIG. 3 is not intended

to suggest any limitation as to the scope ofuse or functionality
of embodiments of the present invention. Neither should the
illustrative process 300 be interpreted as having any depen-
dency or requirement related to any single component or
combination of components illustrated therein. Additionally,
any one or more of the components depicted in FIG. 3 may be,
in embodiments, integrated with various ones of the other
components depicted therein (and/or components not illus-
trated), all of which are considered to be within the ambit of
the present invention. For example, the load predictor 310 and
the maximum consumption estimator 312 may be integrated
as a single component.
Additional, alternative and overlapping aspects of embodi-

ments of the invention for dynamically allocating server
resources for performing tasks are illustrated in FIG. 4. As
described above, a resource manager (e.g., the resource man-
ager 108 depicted in FIG. 1) may utilize a current queue
distribution, in addition to historical task execution informa-
tion, to dynamically add or remove worker servers so as to
allocate a determined number of servers for a particular time
period in the future. FIG. 4 is a flow diagram depicting an
illustrative method 400 of dynamically allocating server
resources.
As depicted in FIG. 4, embodiments of the illustrative

method 400 include determining a current queue distribution
(block 402), determining a prior task creation rate (block
404), and determining a prior task execution prediction value
(block 406). As described above, the current queue distribu-
tion may include a number of times one or more tasks, each
having a task type of a set of task types, are scheduled to be
executed within a time period in the future, where the current
queue distribution is associated with the task types of the one
or more tasks. Embodiments of the method 400 include pre-
dicting (e.g., using a load predictor such as, for example, the
load predictor 310 shown in FIG. 3) a total number of tasks of
each of the task types associated with the current queue dis-
tribution, to be executed during the time period (block 408).
In embodiments, the total number of tasks to be executed
during the time period may be predicted using a nonlinear
estimator.
As shown in FIG. 4, the resource manager may determine

a current number of instantiated servers (block 410). Addi-
tionally, embodiments of the illustrative method 400 include
determining an historical backlog (block 412) and an histori-
cal task consumption rate (block 414). As described above,
the historical backlog may include a number of task execu-
tions that were scheduled for a prior time period that failed to
be performed on time as a result of insufficient server
resources. The historical task consumption rate may include a
number of task executions performed during a prior time
period. Based on this information, the resource manager esti-
mates an average maximum task consumption per server
(block 416) and determines a total number of servers to allo-
cate during the time period (block 418). In embodiments, the
method 400 further includes allocating a determined number
of servers (block 420) such as by adding or removing servers
prior to the time period.
While embodiments of the present invention are described

with specificity, the description itself is not intended to limit
the scope of this patent. Thus, the inventors have contem-

20

25

30

35

40

45

50

55

60

65

US 9,354,937 B2
11

plated that the claimed invention might also be embodied in
other ways, to include different steps or features, or combi-
nations of steps or features similar to the ones described in
this document, in conjunction with other technologies. For
example, embodiments of the invention may be implemented
in connection with anti-piracy network canning tasks, web
crawling tasks, private and public cloud computing tasks,
and/or the like.

The following is claimed:
1. A computer-implemented method for dynamically allo-

cating server resources, the method comprising:
determining a current queue distribution, wherein the cur-

rent queue distribution comprises a number of times that
one or more tasks, each having a task type from a set of
task types, are scheduled to be executed within a time
period in the future,

wherein the current queue distribution is associated with
the task types of the one or more tasks;

referencing historical information associated with one or
more prior executions of at least one task of each task
type associated with the current queue distribution;

predicting, based on the current queue distribution and the
historical information, a total number of tasks of each
task type associated with the current queue distribution
that are to be executed during the time period in the
future, wherein the total number of tasks of each task
type associated with the current queue distribution com-
prises at least one task execution that is predicted to be
scheduled before the time period begins;

estimating an average maximum task consumption per
server for each task type associated with the current
queue distribution; and

determining a total number of servers to allocate during the
time period to execute tasks within the time period;

comprising adding or removing one or more servers prior
to the beginning of the time period so as to allocate the
determined total number of servers during the time
period.

2. The method of claim 1, wherein predicting the total
number of tasks of each task type associated with the current
queue distribution that are to be executed during the time
period comprises:
determining at least one input comprising at least one of a
prior task creation rate and a prior prediction value; and

providing the at least one input to a nonlinear estimator.
3. The method of claim 2, wherein the nonlinear estimator

is configured to transform the at least one input based on at
least one assumption, wherein the at least one assumption
comprises at least one of a downward bias that increases with
time and an increasing variance.
4. The method of claim 3, wherein the nonlinear estimator

comprises a nonlinear time series statistical model.
5. The method of claim 1, wherein estimating the average

maximum task consumption per server for each task type
associated with the current queue distribution comprises:
determining a current number of instantiated servers;
determining an historical backlog, wherein the historical
backlog comprises a number of tasks that were sched-
uled for a prior time period that failed to execute on time
as a result of insufficient server resources;

determining an historical task consumption rate; and
providing the determined current number of instantiated

servers, the determined historical backlog, and the deter-
mined historical task consumption rate to a nonlinear
estimator.

12
6. The method of claim 5, wherein the nonlinear estimator

is configured to optimize a function that defines a relationship
between backlog and consumption.
7. The method of claim 1, wherein the time period to

5 execute tasks begins at least about 30 minutes in the future.
8. The method of claim 1, wherein the set of task types

comprises at least one of a web crawling task type, a cloud-
based computational task type, and a network scanning task
type.

10 9. A scalable, distributed server system for performing
tasks, the server system comprising:

a plurality of worker servers, wherein each of the plurality
of worker servers is configured to execute one or more
tasks; and

15 a management server configured to allocate server
resources, the management server comprising a proces-
sor that instantiates a plurality of software components
stored in a memory, the plurality of software compo-
nents comprising:

20 a task scheduler configured to schedule at least one execu-
tion of each of the one or more tasks;

a task queue configured to store an indication of the at least
one scheduled execution of each of the one or more
tasks; and

25 a resource manager configured to
(1) determine a current queue distribution, wherein the

current queue distribution comprises a number of times
that each of the one or more tasks, each having a task
type from a set of task types, is scheduled to be executed

30 within a time period that begins in the future,
wherein the current queue distribution is associated with

the task types of the one or more tasks;
(2) reference historical information associated with one or
more prior executions of at least one task of each of the

35 task types as sociated with the current queue distribution;
and

(3) determine, based on the current queue distribution and
the historical information, a number of servers to allo-
cate during the time period to execute tasks within the

40 time period;
comprising adding or removing one or more servers prior

to the beginning of the time period so as to allocate the
determined total number of servers during the time
period.

45 10. The system of claim 9, wherein the resource manager is
further configured to:

predict, based on the current queue distribution and the
historical information, a total number of tasks of each of
the task types associated with the current queue distri-

50 bution that are to be executed during the time period,
wherein the total number of tasks of each of the task
types associated with the current queue distribution
comprises at least one task execution predicted to be
scheduled before the time period begins; and

55 estimate an average maximum task consumption per server
for each of the task types associated with the current
queue distribution.

11. The system of claim 10, wherein the resource manager
is configured to predict the total number oftasks of each ofthe

60 task types associated with the current queue distribution that
are to be executed during the time period by determining at
least one input comprising at least one of a prior task creation
rate and a prior prediction value; and providing the at least one
input to a nonlinear estimator.

65 12. The system of claim 11, wherein the nonlinear estima-
tor is configured to transform the at least one input based on
at least one assumption, wherein the at least one assumption

US 9,354,937 B2
13

comprises at least one of a downward bias that increases with
time and an increasing variance.
13. The system of claim 12, wherein the nonlinear estima-

tor comprises a nonlinear time series statistical model.
14. The system of claim 10, wherein the resource manager

is configured to estimate the average maximum consumption
per server for each of the task types associated with the
current queue distribution by utilizing a nonlinear estimator
that takes, as input, at least one of a current number of instan-
tiated servers, an historical task consumption rate, and an
historical backlog, wherein the historical backlog comprises
a number of tasks that were scheduled for a prior time period
that failed to execute on time as a result of insufficient server
resources.
15. The system of claim 14, wherein the nonlinear estima-

tor is configured to optimize a function that defines a rela-
tionship between backlog and consumption.
16. The system of claim 9, wherein the time period to

execute tasks begins at least about 30 minutes in the future.
17. The system of claim 9, wherein the set of task types

comprises at least one of a web crawling task type, a cloud-
based computational task type, and a network scanning task
type.
18. A computer-implemented method for dynamically

allocating server resources, the method comprising:
determining a current queue distribution, wherein the cur-

rent queue distribution comprises
a number oftimes that one or more tasks, each having a task

type from a set of task types, are scheduled to be
executed within a time period in the future,

14
wherein the current queue distribution is associated with

the task types of the one or more tasks;

referencing historical information associated with task cre-
ation corresponding to each task type as sociated with the
current queue distribution, wherein the historical infor-
mation comprises at least one prior rate of task creation;

predicting, using a nonlinear estimator that takes, as input,
the current queue distribution and the historical infor-

10
mation, a total number of tasks of each task type asso-
ciated with the current queue distribution that are to be
executed during the time period in the future;

estimating an average maximum consumption per server
for each task type associated with the current queue

15 distribution, wherein estimating the average maximum
consumption per server comprise optimizing a function
configured to facilitate determining a maximum con-
sumption that minimizes backlog; and

determining a total number of servers to allocate during the
20 time period to execute tasks within the time period;

comprising adding or removing one or more servers prior
to the beginning of the time period so as to allocate the
determined total number of servers during the time
period.

25
19. The method of claim 18, whereinthe function is defined

by a maximum of a ratio of a maximum estimated consump-
tion rate per server to an historical backlog term.

* * * * *

	Bibliography
	Drawings
	Description
	Claims

