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(57) ABSTRACT

Methods and systems are described that enable radar refer-
ence map generation. A high-definition (HD) map is
received and one or more HD map objects within the HD
map are determined. Attributes of the respective HD map
objects are determined, and, for each HD map object, one or
more occupancy cells of a radar occupancy grid are indi-
cated as occupied space based on the attributes of the
respective HD map object. By doing so, a radar reference
map may be generated without a vehicle traversing through
an area corresponding to the radar reference map.
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RADAR REFERENCE MAP GENERATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit under 35 U.S.C.
119(e) of U.S. Provisional Application No. 63/146,483, filed
Feb. 5, 2021, and U.S. Provisional Application No. 63/127,
049, filed Dec. 17, 2020, the disclosures of which are
incorporated by reference in their entireties herein.

BACKGROUND

[0002] Radar localization is a technique of using radar
reflections to localize a vehicle to a reference map (e.g.,
determining a location of the vehicle on the map). Radar
localization may be used to support autonomous vehicle
operations (e.g., navigation, path planning, lane determina-
tion and centering, and curve execution without lane mark-
ers). In order to accurately position the vehicle relative to its
environment, radar localization includes obtaining reflec-
tions from stationary localization objects (e.g., road-adjacent
objects or spatial statistical patterns) with known locations
on the map (e.g., locations in a Universal Transverse Mer-
cator or UTM frame). When an availability of such local-
ization objects is not sufficient (e.g., a poor quality or
incomplete radar reference map is used), a driver takeover is
often initiated, which may override semi-autonomous or
fully autonomous controls. Increased driver takeovers may
be less safe, and their frequency can decrease driver satis-
faction compared to when a vehicle operates under autono-
mous control. As such, complete and accurate maps that are
easy to generate, update, and use can greatly benefit driver
assist or autonomous driving capabilities.

SUMMARY

[0003] Aspects described below include methods for radar
reference map generation. The methods include receiving a
high-definition (HD) map and determining one or more HD
map objects within the HD map. The methods also include
determining attributes of the respective HD map objects and,
for each HD map object, indicating one or more occupancy
cells of a radar occupancy grid as occupied space based on
the attributes of the respective HD map object.

[0004] Aspects described below also include systems for
radar reference map generation. The systems include at least
one processor and at least one computer-readable storage
medium comprising instructions that, when executed by the
processor, cause the systems to receive a high-definition
(HD) map and determine one or more HD map objects
within the HD map. The instructions also cause the systems
to determine attributes of the respective HD map objects
and, for each HD map object, indicate occupancy cells of a
radar occupancy grid as occupied space based on the attri-
butes of the respective HD map object.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Systems and techniques enabling radar reference
map generation are described with reference to the following
drawings. The same numbers are used throughout the draw-
ings to reference like features and components:

[0006] FIG.1 is an example illustration of an environment
in which radar reference map generation may be imple-
mented, in accordance with techniques of this disclosure;

Jun. 23,2022

[0007] FIG. 2-1 is an example illustration of systems that
may be used to implement radar reference map generation
and vehicle localization based on radar detections, in accor-
dance with techniques of this disclosure;

[0008] FIG. 2-2 is an example illustration of a radar-
localization module that may be used to implement vehicle
localization based on radar detections;

[0009] FIG. 2-3 is another example illustration of a radar-
localization module that may be used to implement vehicle
localization based on radar detections;

[0010] FIG. 3 is an example illustration of generating a
radar reference map, in accordance with techniques of this
disclosure;

[0011] FIG. 4 is an example illustration of determining a
radar occupancy grid, in accordance with techniques of this
disclosure;

[0012] FIG. 5 is an example illustration of generating a
radar reference map from radar attributes, in accordance
with techniques of this disclosure;

[0013] FIG. 6 is an example illustration of a process of
generating a radar reference map, in accordance with tech-
niques of this disclosure;

[0014] FIG. 7 is an example illustration of generating a
radar occupancy grid based on multiple vehicle-runs with
low-accuracy location data, in accordance with techniques
of this disclosure;

[0015] FIG. 8 is another example illustration of generating
a radar occupancy grid based on multiple vehicle-runs with
low-accuracy location data, in accordance with techniques
of this disclosure;

[0016] FIG. 9 is an example illustration of a process of
generating a radar occupancy grid based on multiple
vehicle-runs with low-accuracy location data, in accordance
with techniques of this disclosure;

[0017] FIG. 10 is an example illustration of generating a
radar reference map using low-accuracy location data and a
high-definition (HD) map, in accordance with techniques of
this disclosure;

[0018] FIG. 11 is an example illustration of a process of
generating a radar reference map using low-accuracy loca-
tion data and an HD map, in accordance with techniques of
this disclosure;

[0019] FIG. 12 is another example illustration of generat-
ing a radar reference map using low-accuracy location data
and an HD map, in accordance with techniques of this
disclosure;

[0020] FIG. 13 is another example illustration of a process
of generating a radar reference map using low-accuracy
location data and an HD map, in accordance with techniques
of this disclosure;

[0021] FIG. 14 is an example illustration of determining a
radar occupancy grid using an HD map, in accordance with
techniques of this disclosure;

[0022] FIG. 15 is another example illustration of deter-
mining a radar occupancy grid using an HD map, in accor-
dance with techniques of this disclosure;

[0023] FIG. 16 is an example illustration of a process of
determining a radar occupancy grid using an HD map, in
accordance with techniques of this disclosure;

[0024] FIG. 17 illustrates a flow chart as an example
process for updating, through multiple iterations, a radar
reference map used for vehicle localization based on radar
detections, in accordance with techniques of this disclosure;
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[0025] FIG. 18 illustrates an example implementation
1800 of a system configured to update, through multiple
iterations, a radar reference map used for vehicle localiza-
tion based on radar detections, in accordance with tech-
niques of this disclosure;

[0026] FIG. 19 illustrates a pipeline for updating, through
multiple iterations, a radar reference map used for vehicle
localization based on radar detections, in accordance with
techniques of this disclosure;

[0027] FIGS. 20-1 to 20-3 illustrate an example imple-
mentation of hindsight used to update, through multiple
iterations, a radar reference map used for vehicle localiza-
tion based on radar detections, in accordance with tech-
niques of this disclosure;

[0028] FIG. 21 illustrates an example process for deter-
mining a hindsight maximum boundary for radar coordi-
nates when updating, through multiple iterations, a radar
reference map used for vehicle localization based on radar
detections, in accordance with techniques of this disclosure;
[0029] FIGS. 22-1 to 22-2 illustrate a flow chart of an
example of a process for vehicle localization based on radar
detections, in accordance with techniques of this disclosure;
and

[0030] FIG. 23 illustrates a flow chart of an example
process for vehicle localization based on radar detections.

DETAILED DESCRIPTION

[0031] Overview

[0032] Radar localization is a technique of using radar
reflections to localize a vehicle relative to stationary objects
(e.g., radar-localization objects). One application of radar
localization is localizing a vehicle to a map, similar to
geospatial positioning systems (e.g., GPS, GNSS, GLO-
NASS). Just as those positioning systems require adequate
signal reception, radar localization requires radar reflections
from radar-localization objects with known locations (e.g.,
guardrails, signs, or statistical patterns). The locations of
those objects are generally comprised by a radar-reference
map.

[0033] Methods and systems are described that enable
radar reference map generation. By utilizing the techniques
described herein, robust and wide-spanning radar reference
maps may be generated, often times without dedicated or
expensive sensor modules. For example, a radar occupancy
grid is received, and radar attributes are determined from
occupancy probabilities within the radar occupancy grid.
Radar reference map cells are formed, and the radar attri-
butes are used to determine Gaussians for the radar reference
map cells that contain a plurality of the radar attributes. A
radar reference map is then generated that includes the
Gaussians determined for the radar referenced map cells that
contain the plurality of radar attributes. By doing so, the
generated radar reference map is accurate while being
spatially efficient. This improved localization capability may
improve driving when used by a controller to operate the
vehicle with greater safety and comfort. With improved
localization, the vehicle does not hesitate and can maneuver
in an environment with greater degrees of accuracy, which
may put passengers at ease when the vehicle drives under
automated or semi-automated control.

[0034] Example Environment

[0035] FIG. 1 is an example illustration 100 of an envi-
ronment in which radar reference maps may be generated,
updated, or used. In the example illustration 100, a system
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102 is disposed in a vehicle 104 (e.g., a host vehicle or
“ego-vehicle”) that is traveling along a roadway 106.

[0036] The system 102 utilizes a radar system (not shown)
to transmit radar signals (not shown). The radar system
receives radar reflections 108 of the radar signals from
objects 110. In example illustration 100, the radar reflection
108-1 corresponds to object 110-1 (e.g., a sign), the radar
reflection 108-2 corresponds to object 110-2 (e.g., a build-
ing), and the radar reflection 108-3 corresponds to object
110-3 (e.g., a guardrail).

[0037] The radar reflections 108 may be used to generate
a radar reference map, as discussed in reference to FIGS.
3-13. The radar reflections 108 may also be used to update
an existing radar reference map, as discussed in reference to
FIGS. 17-21. The radar reflections 108 may further be used
in conjunction with an existing radar reference map to
radar-localize the vehicle 104, as discussed in reference to
FIGS. 22 and 23.

[0038]

[0039] FIG. 2-1 is an example illustration 200-1 of sys-
tems that may be used to generate, update, or use radar
reference maps. The example illustration 200-1 comprises
the system 102 of the vehicle 104 and a cloud system 202.
Although the vehicle 104 is illustrated as a car, the vehicle
104 may comprise any vehicle (e.g., a truck, a bus, a boat,
a plane, etc.) without departing from the scope of this
disclosure. The system 102 and the cloud system 202 may be
connected via communication link 204. One or both of the
system 102 and the cloud system 202 may be used to
perform the techniques described herein.

[0040] As shown underneath the respective systems, the
systems include at least one processor 206 each (e.g.,
processor 206-1 and processor 206-2), at least one com-
puter-readable storage medium 208 each (e.g., computer-
readable storage medium 208-1 and 208-2), radar-localiza-
tion modules 210 (e.g., radar-localization module 210-1 and
210-2), and communication systems 212 (e.g., communica-
tion system 212-1 and 212-2). The communication systems
212 facilitate the communication link 204.

[0041] The system 102 additionally contains a navigation
system 214 and a radar system 216. The navigation system
214 may include a geospatial positioning system (e.g., a
GPS, GNSS, or GLONASS sensor), an inertial measurement
system (e.g., a gyroscope or accelerometer), or other sensors
(e.g., a magnetometer, software positioning engine, wheel
tick sensor, lidar odometer, vision odometer, radar odometer,
or other sensor odometer). The navigation system 214 may
provide high-accuracy location data (e.g., to within a meter)
or low-accuracy location data (e.g., to within a couple of
meters). The radar system 216 is indicative of a radar
hardware used to transmit and receive radar signals (e.g.,
radar reflections 108). In some implementations, the radar
system 216 provides static detections to the radar-localiza-
tion modules 210 (e.g., filtering may be performed within
the radar system 216).

[0042] The processors 206 (e.g., application processors,
microprocessors, digital-signal processors (DSP), or con-
trollers) execute instructions 218 (e.g., instructions 218-1
and 218-2) stored within the computer-readable storage
media 208 (e.g., non-transitory storage devices such as hard
drives, SSD, flash memories, read-only memories (ROM),
EPROM, or EEPROM) to cause the system 102 and cloud
system 202 to perform the techniques described herein. The

Example Systems
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instructions 218 may be part of operating systems and/or one
or more applications of the system 102 and cloud system
202.

[0043] The instructions 218 cause the system 102 and the
cloud system 202 to act upon (e.g., create, receive, modify,
delete, transmit, or display) data 220 (e.g., 220-1 and 220-2).
The data 220 may comprise application data, module data,
sensor data, or I/O data. Although shown as being within the
computer-readable storage media 208, portions of the data
220 may be within random-access memories (RAM) or
caches of the system 102 and the cloud system 202 (not
shown). Furthermore, the instructions 218 and/or the data
220 may be remote to the system 102 and the cloud system
202.

[0044] The radar-localization modules 210 (or portions
thereof) may be comprised by the computer-readable storage
media 208 or be stand-alone components (e.g., executed in
dedicated hardware in communication with the processors
206 and computer-readable storage media 208). For
example, the instructions 218 may cause the processors 206
to implement or otherwise cause the system 102 or the cloud
system 202 to implement the techniques described herein.

[0045] FIG. 2-2 is an example illustration 200-2 of the
radar-localization module 210 that may be used to imple-
ment vehicle localization based on radar detections. In the
example illustration 200-2, the radar-localization module
210 is configured to be in a reference mode. The reference
mode is used when the radar-localization module 210 is
being used to build a radar reference map. The radar-
localization module 210 includes two sub-modules, a
vehicle state estimator 222, a scan-matcher 224, and two
optional sub-modules, a static object identifier 226, and an
occupancy grid generator 228. One or both of the static
object identifier 226 and the occupancy grid generator 228
may or may not be present.

[0046] The vehicle state estimator 222 receives navigation
data 230 from navigation systems (e.g., the navigation
system 214 from FIG. 2-1). Generally, in the reference
mode, the navigation data 230 may be sourced from a
high-quality navigation system that provides a higher degree
of accuracy than commercial or consumer-grade navigation
systems (e.g., navigation systems used for mass production).
From the navigation data 230, the vehicle state estimator 222
determines ego-trajectory information about the current
dynamic state (e.g., speed, yaw rate) of the vehicle 104 and
may provide the state estimates and other navigation data
230 (e.g., latitude and longitude of the vehicle 104) to any
of the other sub-modules that are present in the radar-
localization module 210. FEgo-trajectory information
includes information, originating from systems of a vehicle,
that may be used to project the direction and velocity of the
vehicle.

[0047] The static object identifier 226 receives radar
detections 232 from one or more radar sensors positions
around the vehicle 104. If the static object identifier 226 is
not being utilized, then the radar detections 232 may be
received by the occupancy grid generator 228, the scan-
matcher 224, or another sub-module designed to accept the
radar detections 232 and distribute the radar data to other
modules and sub-modules of the vehicle system. The static
object identifier 226 determines whether a radar detection
232 is a static detection based on the ego-trajectory infor-
mation from the vehicle state estimator 222 and outputs any
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identified static detections to either the occupancy grid
generator 228, if it is being utilized, or the scan-matcher 224.
[0048] The occupancy grid generator 228 may receive, as
inputs, either the radar detections 232, if the static object
identifier 226 is not being utilized by the radar-localization
module 210, or the static radar detections output by the static
object identifier 226, as well as, the ego-trajectory informa-
tion and the navigation data 230 output from the vehicle
state estimator 222. The occupancy grid generator 228 uses
the inputs to determine a statistical probability (e.g., occu-
pancy grid) of the occupancy at any given location in the
environment of the vehicle 104, as discussed in other
sections of this document.

[0049] The scan-matcher 224 may receive, as input, the
ego-trajectory information and attribute data. Attribute data
may be either the radar detections 232, the static radar
detections from the static object identifier 226, or the occu-
pancy grid that is output by the occupancy grid generator
228, depending on which optional sub-modules are being
utilized. As described in other sections of this document, the
scan-matcher 224 finds an optimal normal distribution trans-
formation (NDT) between the attribute data and the high-
quality navigation data 230 and outputs an NDT radar
reference map 234.

[0050] FIG. 2-3 is another example illustration 200-3 of a
radar-localization module that may be used to implement
vehicle localization based on radar detections. In the
example illustration 200-3, the radar-localization module
210 is configured to be in a real-time localization mode. The
primary differences between the real-time localization mode
and the reference mode of the radar-localization module 210
include the navigation data 230 originating from a lower-
quality navigation system and an extra input to the scan-
matcher module 224. The output of the radar-localization
module 210 in real-time localization mode is an updated
vehicle pose 236 of the vehicle 104.

[0051] In real-time localization mode, the scan-matcher
224 receives the NDT radar reference map 234 as input, in
addition to the attribute data and the ego-trajectory infor-
mation. The inputs are used by the scan-matcher to deter-
mine an NDT grid. The NDT grid is compared to the NDT
radar reference map to determine the updated vehicle pose
236.

[0052] In one non-limiting example, the radar-localization
module 210 may be used in the reference mode in the
vehicle 104, equipped with a high-quality GNSS system,
that is specially configured to create or assist in the creation
of NDT radar reference maps. The real-time localization
mode may be considered a normal operating mode of the
radar-localization module 210; that is, vehicles not specially
configured to create the NDT radar reference maps may
normally operate with the radar-localization module 210 in
the real-time localization mode.

[0053] Building a Radar Reference Map

[0054] FIG. 3 is an example illustration 300 of generating
a radar reference map from radar detections. Example illus-
tration 300 may be performed by the system 102 and/or the
cloud system 202. At 302, radar detections 304 are received.
The radar detections 304 comprise stationary radar detec-
tions (e.g., detections of stationary objects from radar sys-
tem 216) with corresponding global coordinates for respec-
tive times/locations (e.g., from navigation system 214). The
detections may be of objects such as signs, poles, barriers,
landmarks, buildings, overpasses, curbs, or road-adjacent
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objects such as fences, trees, flora, or foliage, or of spatial
statistical patterns. The global coordinates may comprise
high-accuracy location data (e.g., when the navigation sys-
tem 214 is a high-accuracy navigation system). The radar
detections 304 may comprise point clouds, have correspond-
ing uncertainties, and/or include various radar data or sensor
measurements.

[0055] At 306, a radar occupancy grid 308 is determined
from the radar detections 302. The radar occupancy grid 308
is a grid-based representation of an environment. For
example, the radar occupancy grid 308 may be a Bayesian,
Dempster-Shafer, or other type of occupancy grid. Each cell
of the radar occupancy grid 308 represents an independent
portion of space, and each cell value of the radar occupancy
grid 308 represents a probability (e.g., 0-100%) that the
corresponding portion of space is occupied. A probability of
around 0% for a cell may indicate that the corresponding
portion of space is free, while a probability closer to 100%
may indicate that the corresponding portion of space is
occupied, and therefore, not free space. Techniques of
determining the radar occupancy grid 308 are discussed
further in regard to FIGS. 4, 7-9, and 14-17.

[0056] At 310, radar attributes 312 (e.g., atiributes or
attribute data) are determined from the radar occupancy grid
308. The radar attributes 312 may be center coordinates of
respective groups of cells of the radar occupancy grid 308
with probabilities greater than a threshold. In some imple-
mentations, the radar attributes 312 may be based on other
aspects such as radar cross sections (RCS), amplitudes of the
radar detections 304, information from other sensors, or
machine learning, separately or in combination with the
probabilities. Regardless of how they are determined, the
radar attributes 312 comprise clusters, contours, or bounding
boxes of the cells of the radar occupancy grid 308. The radar
attributes 312 may have weights based on one or more of
probabilities, classifications, or cross-section values of the
respective radar attributes 312. The radar attributes 312 may
be determined using binarization, a clustering algorithm, or
machine learning on the radar occupancy grid 308. The
determination of the radar attributes 312 generally groups
cells of the radar occupancy grid 308 while removing noise.
[0057] At 314, a radar reference map 316 is generated
from the radar attributes 312. The radar reference map 316
may be a statistical reference map (e.g., a Gaussian repre-
sentation). The radar reference map 316 is a collection of
Gaussians 318 corresponding to occupied areas. The Gauss-
ians 318 (or the cells of the radar reference map 316) have
associated location information (e.g., low or high-quality
location information depending on how the radar reference
map 316 is generated). Each cell of the radar reference map
316 can have a single Gaussian 318 or be blank. Although
not required, the radar reference map 316 has cells that are
larger than the cells of the radar occupancy grid 308. The
radar reference map 316 can be a stand-alone map or a layer
in another map (e.g., a layer in a high-definition (HD) map).
[0058] The radar reference map 316 may contain metadata
associated with the respective Gaussians 318. For example,
the metadata may contain information about shapes or
dimensions of clusters of Gaussians 318. The metadata may
also include object associations, e.g., certain Gaussians 318
belong to a sign or guardrail. The location data may also be
contained within the metadata. Techniques of generating the
radar reference map 316 are discussed further in regard to
FIGS. 5, 6, and 10-13.
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[0059] FIG. 4 is an example illustration 400 of determin-
ing the radar occupancy grid 308 from the radar detections
304. Example illustration 400 is generally performed by the
system 102, although portions or all of example illustration
400 may be performed by the cloud system 202. Example
illustration 400 assumes that the location data associated
with the radar detections 304 is high-accuracy location data
(e.g., the navigation system 214 contains a high-accuracy
GNSS).

[0060] At 402, one set (e.g., time) of the radar detections
304 is received (e.g., a radar detection 304 corresponding to
a zero-point), and radar occupancy evidences 404 are deter-
mined from the one set of radar detections 304. The radar
occupancy evidences 404 correspond to respective cells of
the radar occupancy grid 308 and are indicative of occupied
spaces within the radar occupancy grid 308. The radar
occupancy evidences 404 are based on radar reflections 108
corresponding to the one set of radar detections 304 and
associated range and azimuth uncertainties.

[0061] At 406, radar occupancy probabilities 408 are
determined from the radar occupancy evidences 404. For
example, the radar occupancy probabilities 408 may be
given by Equation 1:

p=05+0.5¢ 1

[0062] where p is a radar occupancy probability 408 and
e is an occupancy evidence 404.

[0063] Steps 402 and 406 may be repeated for other sets
of radar detections 304 corresponding to later times/loca-
tions. For each of the later times/locations, the radar occu-
pancy probabilities 408 are fused, at 410, with a decayed and
shifted radar occupancy grid 412. The decayed and shifted
radar occupancy grid 412 represents a current radar occu-
pancy grid 414 (e.g., the radar occupancy grid 308 at the
current time/location) with decayed probabilities and cells
that have been shifted due to a movement of the vehicle
between the previous time/location and current ones. The
fusing is used to update the radar occupancy grid 308 based
on subsequent radar detections 304 corresponding to the
later times/locations.

[0064] In order to generate the decayed and shifted radar
occupancy grid 412, at 416, the current radar occupancy grid
414 (e.g., at the respective location) is decayed to form a
decayed radar occupancy grid 418. The decay comprises
forgetting, minimizing, or otherwise removing old evidence
from the current radar occupancy grid 414. This ensures that
only recently generated cells are used for the fusing. It
should be noted that the radar occupancy grid 308 is not
decayed, rather, the current radar occupancy grid 414, which
is a snapshot of the radar occupancy grid 308, is decayed.
[0065] The decayed radar occupancy grid 418 is then
shifted, at 420, to form the decayed and shifted radar
occupancy grid 412. Each cell of the radar occupancy grid
308 (and the current radar occupancy grid 414) represents an
area. As such, as the vehicle 104 moves, the grid must be
shifted. To shift the grid, a vehicle position 422 at the time
of the shift/decay is received. The decayed radar occupancy
grid 418 is shifted by integer numbers of cells that corre-
spond to the vehicle position 422. For example, the integer
numbers may be based on a change between a vehicle
position 422 that corresponds to the unshifted occupancy
grid (e.g., the decayed radar occupancy grid 418 and the
current radar occupancy grid 414) and the vehicle position
422.
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[0066] As stated above, the decayed and shifted radar
occupancy grid 412 is fused, at 410, with the radar occu-
pancy probabilities 408 of the current set of radar detections
304. The fusion effectively accumulates radar occupancy
probabilities 408 over time to enable the radar occupancy
grid 308 to be more robust. Any fusion method may be used.
For example, a Bayesian fusion method may be used accord-
ing to Equation 2:

Prow = Pold * Pmeasured [2]
e (pold ) pmeaxured) + (1 - pold) ) (1 - pmea&ured)
[0067] where p,., i1 an occupancy probability for a

respective cell (e.g., in the radar occupancy grid 308), p,,,
is an existing radar occupancy probability for the respective
cell (e.g., in the decayed and shifted radar occupancy grid
412), and p,,,, ... 15 a radar occupancy probability 408 for
the respective cell.

[0068] By using the example illustration 400, radar occu-
pancy probabilities 408 from multiple times/locations may
be fused. In so doing, the radar occupancy grid 308 becomes
accurate and robust for use in the example illustration 300.

[0069] FIG. 5 is an example illustration 500 of determin-
ing the radar reference map 316 from the radar attributes
312. At 502, normal distribution transform (NDT) cells 504
are established. The NDT cells 504 are the cells of the radar
reference map 316. The NDT cells 504 are generally much
larger (e.g., 15 times larger) than the cells of the radar
occupancy grid 308.

[0070] For each NDT cell 504 that has a plurality of radar
attributes 312, a Gaussian 318 (e.g., a multivariate distribu-
tion with a mean and covariance) is determined. In order to
do so, at 506, a mean and covariance 508 are determined for
the respective NDT cell 504. The mean and covariance 508
are based on radar attributes 312 identified within the
respective NDT cell 504. The mean for the respective NDT
cell 504 may be determined based on Equation 3:

0= P B3]

[0071] where p, is the occupancy probability of the radar
occupancy grid 308 at a given cell of the radar occupancy
grid 308, x; is the given cell position, and n is a number of
cells within the radar attributes 312 of the respective NDT
cell 504.

[0072] The covariance (e.g., 2x2 matrix) for the respective
NDT cell 504 may be determined based on Equation 4:

2SI ) [4]

[0073] Advantageously, the mean and covariance 508 are
based on occupancy probability. At 510, the covariance for
the respective NDT cell 504 may be manipulated such that
the smallest eigenvalue of the covariance matrix is at least
some multiple of the largest eigenvalue of the covariance
matrix. The mean and covariance 508 (or a manipulated
covariance if step 510 is performed) make up the Gaussian
318 for the respective NDT cell 504. If there are one or fewer
radar attributes 312 within the respective NDT cell 504, the
respective NDT cell 504 is indicated as unoccupied.

[0074] Steps 506 and 510 can then be performed for others
of the NDT cells 504. At 512, the Gaussians 318 for the
respective NDT cells 504 are combined to form the radar
reference map 316. Once combined, the NDT cells 504 of
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the radar reference map 316 may a single Gaussian 318 or
nothing (e.g.. indicated as unoccupied).

[0075] Although steps 506 and 510 are discussed as being
performed on a respective NDT cell 504 and then other NDT
cells 504, in some implementations, step 506 may be per-
formed on the NDT cell 504 as a group prior to performing
step 510 on the group. For example, the mean and covari-
ance 508 may be determined for each NDT cell 504 of a
group. Then, the covariances may be manipulated, as
needed, for each NDT cell 504 of the group.

[0076] By using the techniques of example illustrations
300, 400, and 500, an accurate and space efficient radar
reference map may be generated. Using a space eflicient
map lowers computational requirements and enables faster
localization to support driver assist and autonomous driving
functionalities.

[0077] FIG. 6 is an example illustration 600 of a method
of building the radar reference map 316. The example
illustration 600 may be implemented utilizing the previously
described examples, such as the example illustrations 100,
300, 400, and 500. Operations 602 through 610 may be
performed by one or more entities of the system 102 and/or
the cloud system 202 (e.g., the radar-localization module
210). The order in which the operations are shown and/or
described is not intended to be construed as a limitation, and
any number or combination of the operations can be com-
bined in any order to implement the illustrated method or an
alternate method.

[0078] At 602, a radar occupancy grid is received. For
example, the radar-localization module 210 may receive the
radar occupancy grid 308.

[0079] At 604, radar attributes are determined from the
radar occupancy grid. For example, the radar-localization
module 210 may use thresholding on occupancy probabili-
ties within the radar occupancy grid 308 to determine the
radar attributes 312. The radar attributes 312 may comprise
center coordinates of respective groups of cells of the radar
occupancy grid that have occupancy probabilities above a
threshold, or within a threshold range.

[0080] At 606, radar reference map cells are formed. For
example, the radar-localization module 210 may create the
NDT cells 504 of the radar reference map 316.

[0081] At 608, Gaussians are determined for radar refer-
ence map cells that contain a plurality of radar attributes. For
example, the radar-localization module 210 may determine
the mean and covariance 508 for each of the NDT cells 504
that contain a plurality of radar attributes 312.

[0082] At 610, a radar reference map is generated. The
radar reference map comprises the radar reference map cells
that include the Gaussians and radar reference map cells
indicated as unoccupied. The radar reference map cells that
are indicated as unoccupied correspond to radar reference
map cells that do not contain a plurality of radar attributes.
For example, the radar-localization module 210 may com-
bine the NDT cells 504 with Gaussians 318 and NDT cells
504 that are indicated as unoccupied to form the radar
reference map 316.

[0083] FIG. 7 is an example illustration 700 of determin-
ing the radar occupancy probabilities 408 using multiple
vehicle runs with low-accuracy location data. FIG. 8 is an
example illustration 800 of a similar process. As such, the
following description describes example illustrations 700
and 800 simultaneously. Example illustrations 700 and 800
are generally performed by the cloud system 202 based on
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radar detections 304 received from the multiple vehicle runs,
although one or more of the steps may be performed by the
system 102 (e.g., the gathering of the radar detections 304
and transmitting the radar detections 304 to the cloud system
202 using the communication system 212). The radar occu-
pancy probabilities 408 may then be fused at 410 to create
the radar occupancy grid 308. The radar reference map 316
may then be generated from the radar occupancy grid 308,
similar to example illustrations 100 and 300.

[0084] Gathering high-accuracy location data is often
impractical or expensive for large areas. Example illustra-
tions 700 and 800 determine the radar occupancy probabili-
ties 408 using multiple runs with low-accuracy location
data, such as that generated by most navigation systems
(e.g., navigation system 214) implemented within consumer
and commercial vehicles. Because of the low-accuracy
location data, multiple runs are needed to get occupancy
probabilities 408 that are accurate. Conventional techniques,
such as multiple run averaging, often lead to smeared and
useless probability data.

[0085] Example illustrations 700 and 800 use a statistical
map fusion of multiple runs 702 (e.g., run 702A and run
702B) to correct for the errors in the low-accuracy location
data. Any number of runs 702 may be used (albeit more than
one), and the runs 702 may be created using the same vehicle
or multiple vehicles and at different times. The statistical
map fusion may be an extended particle filter simultaneous
localization and mapping (SLAM) algorithm.

[0086] At 704, particles 706 are created at a given location
(e.g., at time t=0). The particles 706 correspond to respective
possible future locations of the vehicle 104, although the
specific further locations have not been determined yet. The
particles 706 are based on vehicle trajectories 708 that
correspond to the given location (e.g., from navigation
system 214).

[0087] At 710, future positions of the particles are pre-
dicted to form predicted positions 712 (e.g., of the vehicle
104). The predictions are based on the vehicle trajectories
708. For example, the vehicle trajectories 708 may comprise
speed and yaw rate information. The speed and yaw rates
may be used to predict new poses for the respective runs 702
and thus, the predicted positions 712 of the particles 706.
[0088] At 714, particle weights 716 are updated. In order
to do so, the particles 706 are projected onto the radar
occupancy grid 308, where each particle 706 has corre-
sponding grid cells. The sum of all of the probability values
(e.g., from the multiple runs 702) in the corresponding grid
cell is the weight of the particle 706. In other words, the
weight of a particle 706 corresponds to how well a next radar
detection 304 fits the predicted position 712.

[0089] At 718, existing probabilities are updated using the
particle weights 716 to create the radar occupancy prob-
abilities 408.

[0090] At 720, the particles are resampled to create resa-
mpled particles 722. Particles with high weights may be
split, while particles with low weights may disappear. The
resampled particles 722 become the particles at time t+1 for
use in the position prediction (step 710). The resampled
particles 722 may also be used to correct the vehicle
trajectories 708.

[0091] As the time t is incremented, the radar occupancy
probabilities 408 are updated, and the radar occupancy
probabilities 408 are fused with previous radar occupancy
probabilities per 410.
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[0092] One advantage of example illustrations 700 and
800 is that they build the radar occupancy probabilities 408
using data from the runs 702 simultaneously. As such, each
set of particles 706 contains the same data for all the runs
702. This means that the radar occupancy probability 408 for
one particle 706 contains data from all of the runs 702.
Furthermore, the radar occupancy probabilities 408 are
updated (e.g., at 718) using more than one particle 706. The
statistical map fusion also allows for newer runs to be
weighted more than older runs such that change detection
(seasonal vegetation change, constructions, etc.) may be
compensated on a cell level of the radar occupancy grid 308.
[0093] By using the techniques of example illustrations
700 and 800, accurate radar reference maps may be gener-
ated without using high-accuracy location data (e.g., by
using consumer vehicles). As such, the radar reference maps
are easier/more feasible to generate in a wider variety of
locations.

[0094] FIG. 9 is an example illustration 900 of a method
of determining the radar occupancy probabilities 408. The
example illustration 900 may be implemented utilizing the
previously described examples, such as the example illus-
trations 700 and 800. Operations 902 through 910 may be
performed by one or more entities of the system 102 and/or
the cloud system 202 (e.g., the radar-localization module
210). The order in which the operations are shown and/or
described is not intended to be construed as a limitation, and
any number or combination of the operations can be com-
bined in any order to implement the illustrated method or an
alternate method.

[0095] At 902, particles are created. For example, the
radar-localization module 210 may receive radar detections
304 and create particles 706 that correspond to possible
future locations of the vehicle 104 (or vehicles if the runs
702 correspond to multiple vehicles).

[0096] At 904, particle positions are predicted for the
particles. For example, the radar-localization module 210
may receive the vehicle trajectories 708 and determine the
predicted positions 712.

[0097] At 906, particle weights of the particles are
updated. For example, the radar-localization module 210
may determine the particle weights 716 based on radar
detections 304 that correspond to a later time.

[0098] At 908, probabilities are updated based on the
particle weights. For example, the radar-localization module
210 may use the particle weights 716 to determine the radar
occupancy probabilities 408 for fusing at 410.

[0099] At 910, the particles are resampled. For example,
the radar-localization module 210 may create resampled
particles 722 for predicting future positions at 710.

[0100] FIG. 10 is an example illustration 1000 of gener-
ating the radar reference map 316 using low-accuracy loca-
tion data and an HD map 1002. The example illustration
1000 is generally implemented by the system 102.

[0101] The HD map 1002 contains object attributes 1004
that are determined at 1006 for HD map objects 1008 within
the HD map 1002. The HD map objects 1008 may comprise
street signs, overpasses, guard rails, traffic control devices,
posts, buildings, k-rails, or other semi-permanent objects.
The HD map 1002 contains information about each of the
HD map objects 1008.

[0102] Object attributes 1004 that may be determined at
1006 include aspects such as types 1010, dimensions/orien-
tations 1012, locations 1014, linkages to roads 1016 for the
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respective HD map objects 1008, and radar hardware infor-
mation 1018. The types 1010 may define the respective HD
map objects 1008, such as being street signs, overpasses,
guard rails, traffic control devices, posts, buildings, k-rails,
or other semi-permanent objects. The dimensions/orienta-
tions 1012 may comprise physical dimensions and/or ori-
entations (e.g., portrait vs. landscape, rotation relative to the
ground, height relative to the ground) of the respective HD
map objects 1008.

[0103] The locations 1014 may comprise UTM coordi-
nates of the respective objects, and the linkages to roads
1016 may comprise specific locations of the respective
objects relative to the corresponding roads. For example, a
guardrail may have a certain offset relative to its cited
location. In other words, the guard rail itself may not exist
exactly at its location 1014. The linkage to road 1016 may
account for that. In some implementations, the linkage to
road 106 may have a height or elevation aspect. For
example, two objects may have similar coordinates but
correspond to different roads. The height or elevation may
be used to differentiate the two objects. The radar hardware
information 1018 may comprise any information that affects
a radar reflection 108 from the respective HD map object
1008.

[0104] Unaligned radar detections 1020 are received, at
1022, along with the object attributes 1004. The unaligned
radar detections 1020 are similar to the radar detections 304
with low-accuracy location data. The object attributes 1004
are used to determine vehicle poses 1024 for the vehicle 104
at the respective times of the unaligned radar detections
1020.

[0105] In order to do so, the vehicle may localize itself
relative to one or more of the HD map objects 1008 for each
set of unaligned radar detections 1020. For example, the
respective set of unaligned radar detections 1020 may con-
tain detections of the one or more HD map objects 1008.
Since the locations 1014 (and other object attributes 1004)
of the one or more HD map objects 1008 are known, the
radar-localization module 210 can determine the vehicle
pose 1024 at the respective set of unaligned radar detections
1020.

[0106] Once the vehicle poses 1024 are known for the
respective unaligned radar detections 1020, the unaligned
radar detections 1020 may be aligned at 1026. The align-
ment may comprise shifting or rotating the unaligned radar
detections 1020 based on the respective vehicle poses 1024.
[0107] The aligned radar detections become the radar
detections 304. The radar detections 304 may then be used
in example illustrations 300, 400, and 500 to generate the
radar reference map 316.

[0108] The radar reference map 316 may optionally be
sent to the cloud system 202. There, at 1028, the radar
reference map 316 may be updated based on, or compiled
with, other radar reference maps based on other similar runs
by the vehicle or other vehicles.

[0109] By using the techniques of example illustration
1000, accurate radar reference maps may be generated
without using high-accuracy location data (e.g., by using
consumer vehicles). As such, the radar reference maps are
easier/more feasible to generate in a wider variety of loca-
tions.

[0110] FIG. 11 is an example illustration 1100 of a method
of generating the radar reference map 316 using low-
accuracy location data and an HD map 1002. The example

Jun. 23,2022

illustration 1100 may be implemented utilizing the previ-
ously described examples, such as the example illustration
1000. Operations 1102 through 1110 are generally per-
formed by the system 102. The order in which the operations
are shown and/or described is not intended to be construed
as a limitation, and any number or combination of the
operations can be combined in any order to implement the
illustrated method or an alternate method.

[0111] At 1102, unaligned radar detections are received.
For example, the radar-localization module 210 may receive
the unaligned radar detections 1020.

[0112] At 1104, HD map object attributes are determined.
For example, the radar-localization module 210 may deter-
mine the object attributes 1004 for the HD map objects 1008
of the HD map 1002.

[0113] At 1106, vehicle poses are determined for each set
of unaligned radar detections. For example, the radar-local-
ization module 210 may determine the vehicle poses 1024
based on the unaligned radar detections 1020 and the object
attributes 1004.

[0114] At 1108, the unaligned radar detections are aligned.
For example, the radar-localization module 210 may use the
vehicle poses 1024 to shift the unaligned radar detections
1020. The aligned radar detections essentially become the
radar detections 304.

[0115] At 1110, a radar reference map is generated. For
example, the radar-localization module 210 may perform the
example illustrations 300, 400, and 500 to generate the radar
reference map 316 from the aligned radar detections (radar
detections 304).

[0116] Optionally, at 1112, the radar reference map may be
transmitted to a cloud system for updating. The updating
may be based on similar reference maps generated by the
vehicle or another vehicle. For example, the radar-localiza-
tion module 210 of the cloud system 202 may modify or
update the radar reference map 316 based on other similar
radar reference maps received from the vehicle or other
vehicles.

[0117] FIG. 12 is an example illustration 1200 of gener-
ating the radar reference map 316 using low-accuracy loca-
tion data and the HD map 1002 (not shown). The example
illustration 1200 is generally performed by the cloud system
202 based on information received from the system 102.
[0118] At the system 102, the unaligned radar detections
1020 are run through the example illustrations 300, 400, and
500 to generate an unaligned radar reference map 1202. The
unaligned radar reference map 1202 may be similar to the
radar reference map 316, except that the Gaussians 318 may
not be in correct places (due to low-accuracy location data).
[0119] In some implementations, only a portion of
example illustration 400 may be performed. For example,
the steps up to step 410 may be performed to form individual
occupancy grids for respective sets of unaligned radar
detections 1020, as the low-accuracy location data may not
lend itself to fusing with other data to form a single radar
occupancy grid (e.g., radar occupancy grid 308). Each
unaligned radar occupancy grid may then be used to form
the unaligned radar reference map 1202.

[0120] The unaligned radar reference map 1202 (e.g., with
unaligned Gaussians that are similar to Gaussians 318) is
then sent to the cloud system 202. At 1204, the object
attributes 1004 of the HD map 1002 are used by the cloud
system 202 to align the unaligned radar reference map 1202
to generate the radar reference map 316.
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[0121] In order to do so, similarly to example illustration
1000, the object attributes 1004 are usable to align or change
the Gaussians 318 within the unaligned radar reference map
1202. For example, the object attributes 1004 may be used
to determine Gaussians 318 within the unaligned radar
reference map 1202 that correspond to the corresponding
HD map objects 1008. Since the locations of those objects
are known, the Gaussians 318 can be shifted to correct
locations.

[0122] If the unaligned radar detections 1020 are contigu-
ous in space (e.g., they incrementally follow a path), then the
unaligned radar reference map 1202 may have accurate
locations of the Gaussians 318 relative to one another. In
such a case, the unaligned radar reference map 1202 may
only need to be shifted or rotated globally (instead of having
to align each Gaussian 318).

[0123] The unaligned radar detections 1020 may also be
sent to the cloud system 202 to process in a manner similar
to example illustration 1000. The unaligned radar reference
map 1202, however, is much smaller and therefore easier to
transmit.

[0124] By using the techniques of example illustration
1200, accurate radar reference maps may be generated
without using high-accuracy location data (e.g., by using
consumer vehicles). As such, the radar reference maps are
easier/more feasible to generate in a wider variety of loca-
tions.

[0125] FIG. 13 is an example illustration 1300 of a method
of generating the radar reference map 316 using low-
accuracy location data and an HD map 1002. The example
illustration 1300 may be implemented utilizing the previ-
ously described examples, such as the example illustration
1200. Operations 1302 through 1306 are generally per-
formed by the cloud system 202. The order in which the
operations are shown and/or described is not intended to be
construed as a limitation, and any number or combination of
the operations can be combined in any order to implement
the illustrated method or an alternate method.

[0126] At 1302, an unaligned radar reference map is
received. For example, the radar-localization module 210
may receive the unaligned radar reference map 1202 from
the system 102.

[0127] At 1304, HD map object attributes are determined.
For example, the radar-localization module 210 may deter-
mine the object attributes 1004 for the HD map objects 1008
of the HD map 1002.

[0128] At 1306, the unaligned radar reference map is
aligned based on the HD map object attributes. For example,
the radar-localization module 210 may use the object attri-
butes 1004 to determine Gaussians within the unaligned
radar reference map 1202 that correspond to the associated
HD map objects 1008. Differences between locations of the
corresponding Gaussians and the HD map objects 1008 may
then be used to correct, adjust, shift, or otherwise correct the
unaligned radar reference map 1202 to form the radar
reference map 316.

[0129] FIG. 14 is an example illustration 1400 of gener-
ating the radar occupancy grid 308 using the HD map 1002.
The example illustration 1400 may be integrated with
example illustrations 300 and 500 to generate the radar
reference map 316. The example illustration 1400 does not
need radar (e.g., radar reflections 108, radar detections 304)
to create the radar occupancy grid 308. As will be apparent,
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however, example illustration 1400 does rely on an avail-
ability of the HD map objects 1008 in the HD map 1002.
[0130] Similar to example illustrations 1000 and 1200, the
object attributes 1004 of the HD map objects 1008 are
determined. The object attributes 1004 are used to deter-
mine, at 1402, shapes 1404. The shapes 1404 are geometric
representations of the HD map objects 1008 relative to the
radar occupancy grid 308. The shapes 1404 may be lines,
polylines, polygons, geometric shapes, curves, complex
curves, or statistical representations. For example, a loca-
tion, orientation, and specifics (e.g., offset) of a guardrail
may be used to generate a shape 1404 of occupied spaces in
the radar occupancy grid 308 that correspond to the guard-
rail.

[0131] At 1406, sizes of the respective shapes 1404 are
compared to a grid size of the radar occupancy grid 308. If
a shape 1406 is not longer than a grid cell of the radar
occupancy grid 308, the corresponding grid cell is marked as
being occupied.

[0132] If however, a shape 1406 is longer than a grid cell,
the shape 1406 is oversampled, at 1408, to create an over-
sampled shape 1410. The oversampling comprises adding
more points along the respective shape 1404 to simulate a
radar occupancy grid output from radar detections (e.g.,
from radar detections 304).

[0133] The shapes 1404 or the oversampled shapes 1410
are then adjusted (e.g., transformed) based on the object
attributes 1004 or some other information, at 1412, to form
adjusted shapes 1414. Continuing with the guardrail
example above, the system may know that guardrails of a
certain type are always some distance further away from an
edge of the road than the location contained within the object
attributes 1004. The adjusted shapes 1414 are used to mark
corresponding grid cells of the radar occupancy grid 308 as
occupied.

[0134] In some implementations, the shapes 1404 or the
oversampled shapes 1410 may be used to determine the
radar reference map 316 instead of the radar occupancy grid
308. In other words, the Gaussians 318 may be generated
based on the shapes 1404 or the oversampled shapes 1400
without first generating the radar occupancy grid 308.
[0135] As shown in the example radar occupancy grid
308, the HD map objects 1008 (e.g., the guardrails) are
represented as occupied spaces. In this way, the radar
occupancy grid 308 may be generated without necessitating
a vehicle driving through the corresponding area.

[0136] FIG. 15 is an example illustration 1500 of gener-
ating the radar occupancy grid 308 using the HD map 1002
and machine-learned models. The example illustration 1500
may be integrated with example illustration 1400 (e.g., to
determine transformations for the adjusting at 1412). In
some implementations, however, the machine-learned mod-
els may be used to indicate cells of the radar occupancy grid
308 directly (e.g., without example illustration 1400).
[0137] In example illustration 1500, the object attributes
1004 are used to select and apply models 1502 that are used
to adjust the shapes at 1412. The models 1502 are based on
respective object attributes 1004.

[0138] At 1504, a model 1502 is selected and applied to
each HD map object 1008. The models 1502 are categorized
by respective object attributes 1004. For example, a model
1502 may exist for each type of HD map object 1008 (e.g.,
model 1502-1 for a guardrail, model 1502-2 for a sign,
model 1502-3 for a building, etc.). Multiple models 1502
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may also exist for a single type of object. For example,
different types of guardrails may have different respective
models 1502.

[0139] The models 1502 are previously generated and may
be taught using machine learning on real-world occupancy
grid data. For example, occupancy data (e.g., portions of that
determined by example illustrations 300 and 400) may be
fed into a model training program along with object attri-
butes 1004 and HD map locations of the corresponding HD
map objects 1008. In so doing, the system is able to form
rules and dependencies that “learn” how to represent corre-
sponding HD map objects 1008 in the radar occupancy grid
308 (e.g., through shape adjustments).

[0140] The output of the respective models 1502 is occu-
pancy grid data 1506 that corresponds to shape adjustment
data. The shape adjustment data may then be used to adjust
the shapes 1404 of example illustration 1400.

[0141] In some implementations, the occupancy grid data
1506 may comprise direct occupancy grid data. In such
cases, shapes are not used, and the occupancy grid data 1506
is used as direct inputs to the radar occupancy grid 308 (e.g.,
the occupancy grid data 1506 is usable to indicate cells of
the radar occupancy grid 308 as occupied).

[0142] As discussed above, the radar occupancy grid 308
can then be used to generate the radar reference map 316. In
this way, real-world radar occupancy data can be used to
estimate adjustments or occupancy of HD map objects 608
for representation in the radar occupancy grid 308.

[0143] By using the techniques of example illustrations
1400 and 1500, accurate radar reference maps may be
generated without using radar detections of the correspond-
ing areas (although, in some implementations, they may be
used to update the maps and/or provide additional map data).
As such, the radar reference maps are easier/more feasible to
generate for a wider variety of locations. Furthermore, the
maps may be generated completely offline as long as the HD
map has sufficient objects.

[0144] FIG. 16 is an example illustration 1600 of a method
of generating the radar occupancy grid 308 using the HD
map 1002. The example illustration 1600 may be imple-
mented utilizing the previously described examples, such as
the example illustrations 1400 and 1500. Operations 1602
through 1608 are generally performed by the cloud system
202 as there is no need for the vehicle 104. The operations
1602 through 1608 (or portions thereof) may be performed
by the system 102, however. The order in which the opera-
tions are shown and/or described is not intended to be
construed as a limitation, and any number or combination of
the operations can be combined in any order to implement
the illustrated method or an alternate method.

[0145] At 1602, HD map object attributes are determined
for HD map objects within an HD map. For example, the
radar-localization module 210 may determine the object
attributes 1004 for the HD map objects 1008 of the HD map
1002.

[0146] At 1604, shapes for the HD map objects are deter-
mined. In some implementations, the shapes may be over-
sampled based on sizes of the respective shapes and a grid
size of a desired radar occupancy grid. For example, the
radar-localization module 210 may determine the shapes
1404 for the HD map objects 1008 and oversample the
shapes 1404 if they are longer than a grid size of the radar
occupancy grid 308.
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[0147] At 1606, adjustments are applied to the shapes as
needed. The adjustments may be based on the HD map
object attributes or machine-learned models for the respec-
tive HD map objects. For example, the radar-localization
module 210 may adjust the shapes 1404 based on the object
attributes 1004 or the models 1502.

[0148] At 1608, cells of a radar occupancy grid are indi-
cated as occupied based on the shapes. For example, the
radar-localization module 210 may indicate cells of the radar
occupancy grid 308 based on the shapes 1404 (after over-
sampling and adjustment per 1406 and 1412).

[0149] By performing one or more of the techniques
described above, accurate and space efficient radar reference
maps may be generated. In this way, accurate localization
may be achieved to support driver assist or autonomous
driving capabilities with limited driver takeover. Less driver
takeover leads to increased safety and driver satisfaction.
[0150] Updating a Radar Reference Map

[0151] The following section describes techniques for
updating a radar reference map. Constant improvement of
the radar reference map is required because any particular
environment through which a vehicle travels tends to change
over time. The radar reference map may include temporary
obstacles that may not be considered attributes, which may
be added or removed. Additionally, a radar reference map
may include false attribute data or missing attributes (e.g.,
occlusions in the radar reference map). Current techniques
for updating the radar reference map often use different
sensors gathering attribute data in a single traversal of an
environment. The techniques described below use radar-
centric data gathered from multiple iterations of traversing
the environment to update the quality of the radar reference
map. The techniques use a process to ensure accurate and
stable data, referred to as hindsight; two non-limiting
examples of which are illustrated. One example uses radar
detections of objects and compares them with an HD map.
The second example uses only radar detections in using
hindsight as a way to ensure the data is accurate and stable.
[0152] FIG. 17 illustrates a flow chart 1700 for updating,
through multiple iterations, a radar reference map used for
vehicle localization based on radar detections. The flow
chart includes multiple runs 1702 (e.g., run 1 to run n where
n can be any integer greater than 1), with each run being an
iteration through an environment represented by a radar
reference map. A first step 1704 of a radar-localization
module (e.g., radar-localization module 210 from FIG. 2-1)
is to receive radar detections and navigation data. In a step
1706, the radar detections and navigation data may be used
by a static object identifier to identify static objects from the
raw radar detections and navigation data collected in step
1704. A step 1708 generates an occupancy grid based on the
static objects identified in step 1706. In a step 1710, a radar
reference map is built from each occupancy grid generated
in each run 1702. A final step 1712 builds (in the initial run
1) and updates (in each successive run n) a relative NDT
radar reference map (e.g., a map relative to the vehicle and
using a relative coordinate system) based on the radar
reference map generated in step 1710. The final step 1710 is
conditioned on an HD map 1714 not being utilized in step
1710 in combination with the occupancy grids generated in
step 1708. Otherwise if the HD map 1714 is utilized in step
1710, the final step 1712 updates an absolute map (e.g., a
universal map using a global coordinate system such as the
UTM coordinate system) during each run 1702.
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[0153] FIG. 18 illustrates an example implementation
1800 of updating, through multiple iterations, a radar refer-
ence map used for vehicle localization based on radar
detections. In the example implementation 1800, a vehicle
1802 equipped with a radar-localization module (e.g.,
onboard, accessed through a cloud) uses hindsight to accu-
mulate accurate and stable radar data about a dynamic object
1804. Radar sensors on the vehicle 1802 have radar sweeps
1806 that transmit electromagnetic energy and receive the
reflections of the electromagnetic energy off of objects. The
radar sweeps 1806 may not be illustrated to scale in FIG. 18
or in any of the other figures in which they are depicted. The
dynamic object 1804 is moving from in front (dynamic
object 1804-1) of the vehicle 1802 to beside (dynamic object
1804-2) the vehicle 1802 to behind (dynamic object 1804-3)
the vehicle 1802. A blind spot 1808 represents a range-rate
blind spot of one or more radar sensors on the vehicle 1802.
Although in the example implementation 1800, the blind
spot 1808 is related to the range rate state of the dynamic
object, any dynamic state of the dynamic object 1804 may
be used as an example.

[0154] Corner radar sensors mounted on the vehicle 1802
are configured such that the bore angles of the radar sensors
are 45° in relation to the longitudinal axis of the vehicle
1802. This enables the corner radar sensors to have the same
radar performance as the front and rear radar sensors of the
vehicle 1802. The accumulated data from all the radar
sensors present the most stable results of object detection at
the rear of the vehicle 1802 with the dynamic object 1804
reflecting several radar detections from the different radar
sensors. As an occupancy grid presents accumulated data, all
available sensor detections contribute to a radar reference
map even if the rear detection is the only one taken into
consideration. The detections from all the radar sensors
contribute to the occupancy probability, and none of the
radar data are omitted. This process may be interpreted as an
application of binary weights for each cell of the occupancy
grid, and the dynamic object 1804 may be excluded from the
updated radar reference map.

[0155] FIG. 19 illustrates a pipeline 1900 for updating,
through multiple iterations, a radar reference map used for
vehicle localization based on radar detections. At a radar
sensor stage 1902 of the pipeline 1900, a radar sensor 1904
receives raw radar detections 1906. At a static object iden-
tifier 1908 stage, the raw radar detections 1904 are classified
at 1910 as static or dynamic radar detections, and augmented
static radar detections 1912 are passed to an occupancy grid
generator 1914 stage. In the occupancy grid generator 1914
stage, occupancy evidence from the augmented static radar
detections 1912 is extracted at 1916. At 1918, the extracted
occupancy evidence from 1916 is used to accumulate and
filter static occupancy on an occupancy grid 1920. An
accumulator 1922 stage then extracts hindsight information
at 1924.

[0156] FIGS. 20-1 to 20-3 illustrate an example imple-
mentation of hindsight used to update, through multiple
iterations, a radar reference map used for vehicle localiza-
tion based on radar detections. In FIG. 20-1, a vehicle 2002,
equipped with a radar-localization module (e.g., onboard,
accessed through a cloud) uses hindsight to accumulate
accurate and stable radar data about a static object 2004 (a
street sign 2004). In a first time frame 2000-1 in FIG. 20, the
street sign 2004 may be detected first by radar sweeps
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2006-1 and 2006-2. Radar sweeps 2006-3 and 2006-4 have
not yet detected the street sign 2004.

[0157] In a second time frame 2000-2 in FIG. 20-2, the
vehicle 2002 has moved down the road, and the street sign
2004 is lateral to the vehicle 2002. At least radar sweeps
2006-1, 2006-2, and possibly radar sweep 2006-3 have
detected the street sign 2004. Additionally, radar sweeps
2006-1 and 2006-2 may have detected a second static object
2008 (a tree 2008).

[0158] In a third time frame 2000-3 in FIG. 20-3, the
vehicle 2002 has moved forward such that the street sign
2004 has been detected by radar sweeps 2006-1, 2006-2,
2006-3, and 2006-4, accumulatively. At this point, the street
sign is in hindsight of the radar sweeps, and the radar data
relative to the street sign may be considered stable and
accurate with a high confidence level. At least radar sweeps
2006-1, 2006-2, and possibly radar sweep 2006-3 have
detected the tree in time frame 2000-3 and have a moderate
confidence level, but higher than a third static object 2010 (a
guard rail 2010). Only sweeps 2006-1 and 2006-2 may have
detected the guard rail 2010.

[0159] Driving on the road in the depictions 2000-1 to
2000-3 over multiple iterations may increase the confidence
level that the static objects 2004, 2008, and 2010 are
permanent and can be considered attributes. If any of the
static objects 2004, 2008, and 2010 disappear during any of
the multiple iterations of runs down the road, the confidence
level for that object may fall, and the object may be removed
from the updated radar reference map. Furthermore, con-
sider a moving vehicle traveling in another direction (e.g., in
a lane adjacent to the vehicle 2002). Conventional tech-
niques may consider the moving vehicle when it is imme-
diately adjacent to the vehicle 2002. By using hindsight, the
moving vehicle will not be considered. In this manner, the
radar reference map may be updated after each iteration to
add or remove attributes as they are detected or disappear,
and to remove any spurious noise that may be present in the
radar reference map.

[0160] FIG. 21 illustrates an example process 2100 to
determine and use a hindsight maximum boundary for radar
coordinates when updating, through multiple iterations, a
radar reference map used for vehicle localization based on
radar detections. There are two options for radar coordi-
nates, radar relative coordinates, and radar absolute coordi-
nates. At 2102, all radar reference maps are loaded. Addi-
tionally, if using radar absolute coordinates, at 2104, sample
points from one or more HD maps are extracted, and at
2106, the extracted sample points are transformed into a
statistical distribution. At 2108, all of the hindsight samples
are collected, and a minimum and maximum for the coor-
dinates (X and Y) are found. At 2110, the minimum and
maximum for the coordinates are used to create a maximum
boundary for a new radar group. At 2112, a resolution is
chosen, and an index of the samples in the resolution of the
coordinates index is checked. At 2114, based on the out-
comes of the check procedure at 2112, if the sample is not
new in the chosen resolution, then at 2116, only the log-odds
ratios, by either Bayes Inverse Model or by maximum
policy, are merged into the radar reference maps. If, at 2114,
the sample is new in the chosen resolution, then at 2118, the
original index of the new sample is added into a new map
index.
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[0161] Example Architecture

[0162] Applying the techniques discussed in this docu-
ment to localize a vehicle based on radar detections may
have many advantages. By using radar-centric systems (e.g.,
a radar system including four short-range radar sensors, one
radar sensor located at each of the four corners of a vehicle),
adverse weather and lighting conditions that may degrade
the effectiveness of other systems (e.g., cameras, LiDAR)
are overcome by only using radar systems. Additionally, the
radar systems used may be less expensive than some other
sensor systems.

[0163] The techniques and systems described in this docu-
ment enable a vehicle to determine its vehicle pose, or
location, at a sub-meter accuracy level. To localize a vehicle
based on radar detections, according to the techniques
described herein, two steps may be performed, including
steps to: construct an accurate radar reference map, and
compare the radar reference map against radar detections
generated in real time to accurately locate the vehicle. FIGS.
22-1 and 22-2 describe one detailed example of how to
achieve these two steps with a radar-localization module,
such as the radar-localization module illustrated in FIGS.
2-2 and 2-3. Other examples may preclude some of the
details in FIGS. 22-1 and 22-2 (e.g., some submodules of the
radar-localization module are optional, as illustrated in
FIGS. 2-2 and 2-3).

[0164] FIGS. 22-1 to 22-2 illustrate an example flow
diagram 2200 of a process for vehicle localization based on
radar detections. FIG. 22-1 covers the first step as flow
diagram 2200-1, and FIG. 22-2 covers the second step as
flow diagram 2200-2. The sub-steps within a dashed box
2202 of FIG. 22-1 and FIG. 22-2 are identical in each step.
[0165] The first step of vehicle localization 2204 is to
construct an accurate radar reference map containing attri-
bute information. Details of several different processes of
constructing the radar reference map have been described
above. The example flow diagram illustrated in FIG. 22-1
details the architecture of constructing the radar reference
map in the vehicle 2204-1 specially equipped with a high-
quality navigation system. The radar-localization module is
in a reference mode for this step.

[0166] In the example flow diagram illustrated in FIG.
22-1, one or more radar sensors 2206 receive raw radar
detections 2208. Simultaneously, high-quality GNSS 2210-1
and inertial measurement unit (IMU) 2212-1 data are col-
lected by a vehicle state estimator 2214 to determine the
vehicle state and vehicle pose. The raw radar detections
2208 are collected at a certain rate, for example, every 50
milliseconds (ms). The raw radar detections 2208 are iden-
tified as static detections or dynamic detections by a static
object identifier 2216. The static object identifier 2216 uses
vehicle state information (e.g., range rate) provided by the
vehicle state estimator 2214 to determine (e.g., determine
through range rate de-aliasing) the identification of the raw
radar detections 2208.

[0167] The static detections are output to an occupancy
grid generator 2218. The occupancy grid generator 2218
estimates an occupancy probability for each cell (e.g., 20
centimeters (cm) by 20 cm cell) in the occupancy grid. The
cell size may impact the processing time for this sub-step.
Different processes, including Bayesian inference, Dempster
Shafer theory, or other processes, can be used to estimate the
occupancy probability for each cell. The occupancy grid
generated by the occupancy grid generator 2218 may be in
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relative coordinates (e.g., local frame of reference) to the
vehicle 2204-1 as the occupancy grid generator 2218
receives vehicle state data from the vehicle state estimator
2214 that assists in the creation of the occupancy grid.
[0168] A scan-matcher 2220 performs a seties of sub-steps
2220-1 to 2220-4. Sub-step 2220-1 transforms the occu-
pancy grid from a relative coordinate system to a UTM
coordinate system. Vehicle state information from the
vehicle state estimator 2214 is used in the transformation
process. Sub-step 2220-2 accumulates occupancy grid out-
puts from sub-step 2220-1 at a certain rate (e.g., 10 Hz). The
rate may be tuned based on a driving scenario (e.g., quantity
of attributes in the environment of the vehicle 2204-1) and
outputs the accumulated occupancy grid to sub-step 2220-3.
Sub-step 2220-3 chooses occupancy grid cells based on a
high-occupancy probability (e.g., a probability equal to or
greater than 0.7). The chosen occupancy grid cells may be
represented as a point cloud. Sub-step 2220-4 transforms the
chosen occupancy grid cells in a Gaussian representation to
create a Gaussian, or NDT, radar reference map. The NDT
radar reference map can be stored locally on the vehicle
2204-1 or uploaded to a cloud 2222,

[0169] The second step of vehicle localization 2204 is to
determine an adjusted vehicle pose based on a comparison
of radar detections of attributes with a radar reference map.
The example flow diagram in FIG. 22-2 details the archi-
tecture used to determine this adjusted vehicle pose for the
vehicle 2204-2. It can be assumed in this example that the
vehicle 2204-2 is configured as a non-luxury vehicle manu-
factured in mass quantities and at cost margins that make
using high-quality GNSS and sensor packages not practical.
That is, the GNSS system 2210-2 and the IMU 2212-2 used
in the vehicle 2204-2 may be considered average (lower
quality) commercial navigation systems. The radar-localiza-
tion module is in a real-time localization mode for the
second step. All of the sub-steps inside the dashed box 2202
are identical to those of the first step illustrated in FIG. 22-1
and, for simplicity, will not be covered again.

[0170] At step 2224, a radar reference map, based on the
vehicle state as determined by the vehicle state estimator
2214, is downloaded from the cloud 2222. The radar refer-
ence map is compared to the chosen occupancy grid cells at
sub-step 2220-5, and based on that comparison, the vehicle
pose 1is corrected for the vehicle 2204-2. A confidence level
of an accuracy of the corrected pose may be used in
determining the accuracy of the corrected pose. Addition-
ally, the corrected vehicle pose may be used to remove errors
(e.g., drift) in the GNSS system 2210-2 and the IMU 2212-2.
[0171] The comparison process matches the radar refer-
ence map, the radar reference map being a set of Gaussian
representations that minimize memory size of the data and
contain statistical information, with a real-time “map” that is
derived from real-time radar detections. The real-time map
is a sub-section of the area represented by the radar reference
map and contains the same Gaussian-type statistical infor-
mation as the radar reference map. In another implementa-
tion, the filtered outputs from the occupancy grid may be
directly compared to the Gaussians in the radar reference
map.

[0172] The NDT process matches statistical probability
distributions between reference data (e.g., discretized cells
with a built-in statistical model). For any given transforma-
tion (e.g., X. y, and rotation) for real-time points (e.g.,
occupancy grid outputs), the real-time points can be
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assigned to discretized NDT cells that contain the statistical
distribution in a model from the radar reference map. The
real-time points are occupancy grid cells that are considered
occupied but are treated as points with a probability value
attached to the points. Probability distributions of the real-
time points can therefore be calculated. The NDT process
finds an optimal transformation that maximizes the prob-
ability distributions.

[0173] FIG. 23 illustrates an example process 2300 for
vehicle localization based on radar detections. At 2302,
radar detections are received by at least one or more pro-
cessors of a vehicle. At 2304, navigation data is received by
at least one or more processors of a vehicle. At 2306,
Ego-trajectory information about a current dynamic state of
the vehicle is output by at least one or more processors of the
vehicle. This ego-trajectory information may include at least
one of direction of travel, velocity, range rate, and yaw rate,
as determined from the radar detections and navigation data.
At 2308, attribute data is extracted from the radar detections
and the ego-trajectory information. At 2310, a normal dis-
tribution transformation grid is determined from the
extracted attribute data and a radar reference map. At 2312,
a vehicle pose is corrected according to the normal distri-
bution transformation grid to localize the vehicle.

[0174] In this manner, the techniques and systems
described herein use cost-effective systems, disregard
dynamic objects, maximize a statistical distribution pattern,
and handle static noise efficiently to accurately adjust the
pose of a vehicle.

EXAMPLES

[0175] Example 1: A method comprising: receiving a
high-definition (HD) map; determining one or more HD map
objects within the HD map; determining attributes of the
respective HD map objects; and for each HD map object:
indicating one or more occupancy cells of a radar occupancy
grid as occupied space based on the attributes of the respec-
tive HD map object.

[0176] Example 2: The method of example 1, further
comprising generating a radar reference map based on the
radar occupancy grid, wherein the radar reference map
comprises statistical representations of the occupancy cells
of the radar occupancy grid that are indicated as occupied
space.

[0177] Example 3: The method of example 1 or 2, wherein
the attributes comprise one or more of a type, location,
dimensions, orientation, linkage to a corresponding road, or
radar hardware information for the respective HD map
object.

[0178] Example 4: The method of any preceding example,
wherein the method is performed by a cloud system that is
external to a vehicle.

[0179] Example 5: The method of any preceding example,
further comprising forming a shape for the respective HD
map object, wherein the indicating is based on the shape.
[0180] Example 6: The method of any preceding example,
further comprising applying an adjustment to the shape
based on the attributes of the respective HD map object to
form an adjusted shape, wherein the indicating is based on
the adjusted shape.

[0181] Example 7: The method of any preceding example,
further comprising determining if the shape is longer than
one of the occupancy cells, wherein the indicating is based
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on the shape responsive to determining that the shape is not
longer than one of the occupancy cells.

[0182] Example 8: The method of any preceding example,
further comprising, responsive to determining that the shape
is longer than one of the occupancy cells, oversampling the
shape to form an oversampled shape, wherein the indicating
is based on the oversampled shape.

[0183] Example 9: The method of any preceding example,
further comprising selecting a model for the respective HD
map object from a plurality of models corresponding to
respective types or attributes of HD map objects, wherein
the adjustment is based on the model.

[0184] Example 10: The method of any preceding
example, further comprising: inputting the attributes of the
respective HD map object into the model; and receiving an
output from the model, wherein the adjustment is based on
the output from the model.

[0185] Example 11: A method comprising: receiving a
high-definition (HD) map; determining one or more HD map
objects within the HD map; determining attributes of the
respective HD map objects; and for each HD map object:
forming a Gaussian for each of one or more radar reference
map cells based on the attributes of the respective HD map
object.

[0186] Example 12: A system comprising: at least one
processor; and at least one computer-readable storage
medium comprising instructions that, when executed by the
processor, cause the system to: receive a high-definition
(HD) map; determine one or more HD map objects within
the HD map; determine attributes of the respective HD map
objects; and for each HD map object: indicate occupancy
cells of a radar occupancy grid as occupied space based on
the attributes of the respective HD map object.

[0187] Example 13: The system of example 12, wherein:
the instructions further cause the system to generate a radar
reference map based on the radar occupancy grid; and the
radar reference map comprises statistical representations of
the occupancy cells of the radar occupancy grid that are
indicated as occupied space.

[0188] Example 14: The system of example 12 or 13,
wherein the attributes comprise one or more of a type,
location, dimensions, orientation, or linkage to a corre-
sponding road for the respective HD map object.

[0189] Example 15: The system of any of examples 12 to
14, wherein: the instructions further cause the system to
form a shape for the respective HD map object; and the
indication is based on the shape.

[0190] Example 16: The system of any of examples 12 to
15, wherein: the instructions further cause the system to
apply an adjustment to the shape based on the attributes of
the respective HD map object to form an adjusted shape; and
the indication is based on the adjusted shape.

[0191] Example 17: The system of any of examples 12 to
16, wherein: the instructions further cause the system to
determine if the shape is longer than one of the occupancy
cells; and the indication is based on the shape responsive to
determining that the shape is not longer than one of the
occupancy cells.

[0192] Example 18: The system of any of examples 12 to
17, wherein: the instructions further cause the system to,
responsive to determining that the shape is longer than one
of the occupancy cells, oversample the shape to form an
oversampled shape; and the indication is based on the
oversampled shape.
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[0193] Example 19: The system of any of examples 12 to
18, wherein: the instructions further cause the system to
select a model for the respective HD map object; and the
adjustment is based on the model.

[0194] Example 20: The system of any of examples 12 to
19, wherein: the instructions further cause the system to:
input the attributes of the respective HD map object into the
model; and receive an output from the model; and the
adjustment is based on the output from the model.

CONCLUSION

[0195] Although implementations for radar reference map
generation have been described in language specific to
certain features and/or methods, the subject of the appended
claims is not necessarily limited to the specific features or
methods described. Rather, the specific features and meth-
ods are disclosed as example implementations for radar
reference map generation. Further, although various
examples have been described above, with each example
having certain features, it should be understood that it is not
necessary for a particular feature of one example to be used
exclusively with that example. Instead, any of the features
described above and/or depicted in the drawings can be
combined with any of the examples, in addition to or in
substitution for any of the other features of those examples.

What is claimed is:

1. A method comprising:

receiving a high-definition (HD) map;

determining one or more HD map objects within the HD

map;

determining attributes of the respective HD map objects;

and

for each HD map object:

indicating one or more occupancy cells of a radar
occupancy grid as occupied space based on the
attributes of the respective HD map object.

2. The method of claim 1, further comprising generating
a radar reference map based on the radar occupancy grid,

wherein the radar reference map comprises statistical

representations of the occupancy cells of the radar
occupancy grid that are indicated as occupied space.

3. The method of claim 1, wherein the attributes comprise
one or more of a type, location, dimensions, orientation,
linkage to a corresponding road, or radar hardware infor-
mation for the respective HD map object.

4. The method of claim 1, wherein the method is per-
formed by a cloud system that is external to a vehicle.

5. The method of claim 1, further comprising forming a
shape for the respective HD map object,

wherein the indicating is based on the shape.

6. The method of claim 5, further comprising applying an
adjustment to the shape based on the attributes of the
respective HD map object to form an adjusted shape,

wherein the indicating is based on the adjusted shape.

7. The method of claim 5, further comprising determining
if the shape is longer than one of the occupancy cells,

wherein the indicating is based on the shape responsive to

determining that the shape is not longer than one of the
occupancy cells.

8. The method of claim 7, further comprising, responsive
to determining that the shape is longer than one of the
occupancy cells, oversampling the shape to form an over-
sampled shape,

wherein the indicating is based on the oversampled shape.
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9. The method of claim 6, further comprising selecting a
model for the respective HD map object from a plurality of
models corresponding to respective types or attributes of HD
map objects,

wherein the adjustment is based on the model.

10. The method of claim 9, further comprising:

inputting the attributes of the respective HD map object

into the model; and

receiving an output from the model,

wherein the adjustment is based on the output from the

model.

11. A method comprising:

receiving a high-definition (HD) map;

determining one or more HD map objects within the HD

map;

determining attributes of the respective HD map objects;

and

for each HD map object:

forming a Gaussian for each of one or more radar
reference map cells based on the attributes of the
respective HD map object.

12. A system comprising:

at least one processor; and

at least one computer-readable storage medium compris-

ing instructions that, when executed by the processor,
cause the system to:
receive a high-definition (HD) map;
determine one or more HD map objects within the HD
map;
determine attributes of the respective HD map objects;
and
for each HD map object:
indicate occupancy cells of a radar occupancy grid as
occupied space based on the attributes of the
respective HD map object.
13. The system of claim 12, wherein:
the instructions further cause the system to generate a
radar reference map based on the radar occupancy grid,
and

the radar reference map comprises statistical representa-

tions of the occupancy cells of the radar occupancy grid
that are indicated as occupied space.

14. The system of claim 12, wherein the attributes com-
prise one or more of a type, location, dimensions, orienta-
tion, or linkage to a corresponding road for the respective
HD map object.

15. The system of claim 12, wherein:

the instructions further cause the system to form a shape

for the respective HD map object; and

the indication is based on the shape.

16. The system of claim 15, wherein:

the instructions further cause the system to apply an

adjustment to the shape based on the attributes of the
respective HD map object to form an adjusted shape;
and
the indication is based on the adjusted shape.
17. The system of claim 15, wherein:
the instructions further cause the system to determine if
the shape is longer than one of the occupancy cells; and

the indication is based on the shape responsive to deter-
mining that the shape is not longer than one of the
occupancy cells.
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18. The system of claim 15, wherein:

the instructions further cause the system to, responsive to
determining that the shape is longer than one of the
occupancy cells, oversample the shape to form an
oversampled shape; and

the indication is based on the oversampled shape.

19. The system of claim 16, wherein:

the instructions further cause the system to select a model
for the respective HD map object; and

the adjustment is based on the model.

20. The system of claim 19, wherein:

the instructions further cause the system to:
input the attributes of the respective HD map object

into the model; and

receive an output from the model; and

the adjustment is based on the output from the model.
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