asy United States

US 20180018365A1

a2 Patent Application Publication (o) Pub. No.: US 2018/0018365 A1

Hanusiak et al.

(43) Pub. Date: Jan. 18, 2018

(54)

(7

(72)

@
(22)

(51

100

MAPPING DATABASE STRUCTURE TO

SOFTWARE

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors:

Tomasz Hanusiak, Czarny Dunajec

(PL); Konrad Wojciech Komnata,
Krakow (PL); Jaroslaw Osinski, Mrozy
(PL); Grzegorz Szezepanik, Krakow

(PL)
Appl. No.: 15/212,772
Filed:

Jul. 18, 2016

Publication Classification

Int. CL
GO6r 17/30

\ 120

/!

Computing Device
1086

(2006.01)

Computing Device
102

Match
Estimate
Module 130

i

Network 10

__

Database 11

DB Structure
Component
List 114A

N

(52) US.CL
CPC .. GOGF 17/30424 (2013.01); GOGF 17/30292
(2013.01); GO6F 17/30864 (2013.01)

&7 ABSTRACT

A first set of metadata may be received, via a network, which
includes structural information about a first database. The
structural information may be compared with one or more
software signatures. Each software signature may include a
software identity that is mapped to one or more associated
database structure identities. A first match estimate may be
generated based on the comparing of the structural infor-
mation with the one or more software signatures. It may be
inferred that the first database is likely included in a first
software product based on the generating of the match
estimate.

Software DB
Signature Data
Store 110

N\

Computing Device
104

TN
N

Database 11

A
Y

DB Structure
Component
List 112A

N~

US 2018/0018365 A1

Jan. 18, 2018 Sheet 1 of 6

Patent Application Publication

TN

YZLll 1si7
suodwo)
aInPnng ga

{1 9@segele

\n\}
N—

1'DId
AT TN
Vel s

suodwio)

axMonIS gq

711 oseqgeleq

-
o \\\‘.l} e
vOi N~ a0l
aolneg bBunndwo) aoineg bunndwio)

“\ e

801 JOMION
011 21018 0St aInpow
ejeqg ainjeubis o1ewnsg
gqd aJemjjog yolemw
ol 0zl lﬂ
aolne Bugndwoy

10]0]

US 2018/0018365 A1

Jan. 18, 2018 Sheet 2 of 6

Patent Application Publication

A~ TN

Vil s
usuodwo)

alnPnais g9q

1 1 @segeie

N
~

(A9 K |

YLl s
jusuoduwion

ainonis gg

1sanbay
Asnpd

0Ll =i015
eleq ainjeubis

g0 sJemlios

0ci

US 2018/0018365 A1

Jan. 18, 2018 Sheet 3 of 6

Patent Application Publication

£ "Old

apa 2pa ‘gpa ‘epd

pa a

EY

sawned| seig

el ewayds

243

1817 Wwauodwio) a41nonis ga

S0E

1

Y

10 V14 T4 1 fPOBN| dX SMOPUIAA 12 J

ea| 093 'qe3 ‘ea3 93 3 a|3810 Xnuy 79 g

e} 2pg ‘qpd ‘epd pd a 4d Xnury v v

sdiysuonejey| saipadoig| sepon shay suwnjod| seygel| ewayss awep so| uoisiapn BT
aseqeleq alemyos

L 240)S ele(m.:z,mcm_w

aqg eiemyog

€0€

Patent Application Publication Jan. 18, 2018 Sheet 4 of 6

SEND A FIRST QUERY REQUEST TO
401 ~JOBTAIN STRUCTURAL INFORMATION OF
| A FIRST DATABASE
]
RECEIVE A FIRST SET OF METADATA
THAT INCLUDES STRUCTURAL

403 INFORMATION ABOUT THE FIRST
DATABASE

COMPARE THE STRUCTURAL

US 2018/0018365 A1

405 INFORMATION WITH ONE OR MORE
SOFTWARE SIGNATURES

l

DETERMINE THAT THE FIRST DATABASE
IS LIKELY INCLUDED IN A PARTICULAR
407 ~] SOFTWARE PRODUCT BASED ON THE
COMPARING

409

HAS STRUCTURAL COMPONENT(S)
OF THE FIRST DATABASE CHANGED
ABOVE A THRESHOLD]

RECEIVE A SECOND SET OF METADATA |
THAT INCLUDES STRUCTURAL

411 INFORMATION ABOUT THE FIRST
DATABASE

FIG. 4

S "OId

US 2018/0018365 A1

i
R 123

- =l s A=Tr
= HOKEY ~
- B O 1405 o 534
g a7 4 a1 o9&
Z 00N I8YALIOS HOISHIA HIA TS
-]
= ﬂ ﬂ
& LS R
= MOENF
= Sl ar =g
3 a— af ois
- BIITAS OMIWNIA0 Iy o8
(=]
= ﬂ ﬂ IONTHSN
= poicugs LIS 609 Jatmtaty 9
= o ST R ApES
= L af 80 Qi 3dal il
== Qm|_| 0 OH5 [e (SRR
5 At I R [e LR L L e e i
> o - . 3dil
.m ISTEYIY3 80 o8 IHNPONTEE ﬂ
(>
= 27 ﬂ ﬂ ﬂ 10S
= 00s 205 G0S €05
=
e
[
[~

Patent Application Publication Jan. 18, 2018 Sheet 6 of 6 US 2018/0018365 A1

COMPUTING DEVICE
600
DISPLAY DISPLAY
SYSTEM
02
— 04
MEMORY 12
“““““]
| PROCESSOR
| ...OC SSOR | —
I [cPU | Estimate
I 06A I' | BusiF | 10 Module 604
| l| MEM BUS
|
cPU 08
| 08B l_
| __)
/0 BUS
IF
14
/16
/O BUS
18 20 22 24
TERMINAL STORAGE /O DEVICE
NETWORK
INTERFACE INTERFACE INTERFACE | | \orocy o
N
26 28
USER O™ STORAGE
DEVICE DEVICE
A4
NETWORK

FIG. 6 30

US 2018/0018365 Al

MAPPING DATABASE STRUCTURE TO
SOFTWARE

BACKGROUND

[0001] This disclosure relates generally to database man-
agement systems, and more particularly to determining a
software identity associated with a database based on the
database’s structure.

[0002] Today, many software products include a database
component. For example, when installing a particular bank-
ing application, a particular database (e.g., a customized
DB2 database) may also have to be installed so that a user
has access to a particular record associated with his/her bank
account. The structure of a database may be tailored or
customized based on the particular software product that is
being utilized. For example, the banking application
described above may correspond to Bank X and may include
a database that has a very specific schema and table column
identity layout (e.g., the first column/primary key is a
“customer ID” field, the second column is a “Bank X
customer name” field, etc.). Therefore, this specific table
layout may be unique because it is associated with a par-
ticular software product in order to meet that software
product’s needs.

SUMMARY

[0003] One or more embodiments are directed to a com-
puter-implemented method, a system, and a computer pro-
gram product for determining a software identity based on a
database structure. A first set of metadata may be received,
via a network, which includes structural information about
a first database. The structural information may be compared
with one or more software signatures. Each software signa-
ture may include a software identity that is mapped to one
or more associated database structure identities. A first
match estimate may be generated based on the comparing of
the structural information with the one or more software
signatures. It may be inferred that the first database is likely
included in a first software product based on the generating
of the match estimate.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 is a block diagram of a computing environ-
ment, according to embodiments.

[0005] FIG. 2 is a diagram illustrating how structural
information of a database may be obtained and compared
with a software signature, according to embodiments.
[0006] FIG. 3 is a diagram illustrating what a software
signature and database structural information may include
and how this information may be compared, according to
embodiments.

[0007] FIG. 4 is a flow diagram of an example process for
determining that a database is likely included in a particular
software product based on comparing structural information
of the database with software signatures, according to
embodiments.

[0008] FIG. 5 is a diagram illustrating how a software
signature may be represented, according to embodiments.
[0009] FIG. 6 is a block diagram of a computing device
that includes a match estimate module, according to embodi-
ments.

[0010] While the invention is amenable to various modi-
fications and alternative forms, specifics thereof have been

Jan. 18, 2018

shown by way of example in the drawings and will be
described in detail. It should be understood, however, that
the intention is not to limit the invention to the particular
embodiments described. On the contrary, the intention is to
cover all modifications, equivalents, and alternatives falling
within the spirit and scope of the invention.

DETAILED DESCRIPTION

[0011] Aspects of the present disclosure relate to deter-
mining a software identity associated with a database based
on the database’s structure. While the present disclosure is
not necessarily limited to such applications, various aspects
of the disclosure may be appreciated through a discussion of
various examples using this context.

[0012] Because there may be many different types of
databases utilized by various software products, it may be
hard to determine which software product is associated with
a particular database. Knowing which software products are
associated with particular databases may useful for network
administrators, for example, who may only have access to
database structure information and not program product
information (e.g., the name and/or version of a program
product). An administrator may desire to know the program
product information so that the administrator may perform
operations and/or remedy a database problem according to
the program product being used. Therefore, the administra-
tor may get a better sense of how to perform an operation or
remedy a problem by knowing the program to which the
database belongs to. For example, the administrator may
have to rebuild one or more indexes on a database. In order
to know how to organize the indexes, it may be useful to
know how the software program product associated with the
database organizes or labels its indexes. Various embodi-
ments are thus directed to determining or ascertaining a
software identity based on a database’s structure.

[0013] FIG. 1 is a block diagram of a computing environ-
ment 100, according to embodiments. The computing envi-
ronment 100 may include a computing device 102 (or set of
computing devices) this is communicatively coupled (e.g.,
via the network 108) to the computing devices 106 and/or
104. In some embodiments, the computing environment 100
may be implemented within a cloud computing environ-
ment, or use one or more cloud computing services. Con-
sistent with various embodiments, a cloud computing envi-
ronment may include a network-based, distributed data
processing system that provides one or more cloud comput-
ing services. Further, a cloud computing environment may
include many computers, hundreds or thousands of them or
more, disposed within one or more data centers and config-
ured to share resources over the network 108.

[0014] Insome embodiments, the computing environment
100 may represent a database cluster environment. The term
“database cluster” may refer to two or more compute nodes
(e.g., server computing devices). Each compute node (e.g.,
computing device 106 and 104) includes or is directly
associated with a storage device (or devices) that stores a
database. The databases associated with the respective com-
pute nodes may be identical, i.e., a single database is
replicated on the storage device associated with each com-
pute node. Alternatively, a single database may be parti-
tioned and the databases associated with the respective
compute nodes may each contain one of the partitions of the
single database. Database clustering may be useful for
providing continuous availability of data in case one or more

US 2018/0018365 Al

compute nodes or associated databases fail (e.g., because of
a failed processor, failed connection path, failed storage
device, etc.). When a database fails, a failover operation may
be executed such that any database operation that was
undertaken but not completed by the failed database is
assumed by a different database within another compute
node.

[0015] Consistent with some embodiments, the computing
devices 102, 104 and/or 106 may be configured the same or
analogous to the computing device 600, as illustrated in FIG.
6. In some computing environments, more or fewer com-
puting devices and/or databases may be present than illus-
trated in FIG. 1. In some embodiments, the computing
device 102 represents a client computing device and the
computing devices 106 and/or 104 represent separate server
computing devices. Accordingly, the client computing
device may request a service or resource from the server
computing device(s), which executes or completes the client
request. In some embodiments, some or each of the com-
ponents (e.g., the computing device 106 and the computing
device 104) of the computing environment 100 represent
single compute instances of a single computing device (e.g.,
computing components within a chassis, a blade server
within a blade enclosure, an I/O drawer, a processor chip,
etc.), as opposed to separate computing devices.

[0016] As illustrated in FIG. 1, the computing device 102
in some embodiments may include a match estimate module
130. The match estimate module 130 may be program
instructions and when coupled with a processor(s) is con-
figured to at least compare the structural information of a
database (e.g., the DB structure component list 112A of
database 112) with one or more software signatures (e.g.,
within the software DB signature data store 110) in order to
determine what software product a particular database
belongs to, which is described in more detail below. The
term “structural information” or database “structure” as
described herein may refer to particular physical/logical
attributes that describe or represent a database and/or a
database’s physical/logical components, such as data object
(s) within a database. For example, structural information
may include information about data structures such as: a
schema structure (e.g., a representation of how data is
organized), table structure (e.g., the names and order of each
table), column structure (e.g., the names and order of each
column), and/or key information (e.g., the name of primary
and/or foreign keys) of a particular database.

[0017] The term “software signature,” as described herein
may refer to some or each of the components or elements
that makeup/are included in a program or software product.
In some embodiments, a software signature may effectively
be a “fingerprint” or “token” of a software or program
product. A “fingerprint” may utilize an algorithm that maps
a relatively large data item (e.g., an entire program product)
into a much shorter bit string (e.g., the fingerprint), which
uniquely identifies the program or software product. The
shorter bit string may represent one or more units of infor-
mation that makeup the program product (e.g., an OS of the
program product, structural information about a database the
program product, etc.). In some embodiments, the software
signature(s) include a software identity (e.g., name) that is
mapped to one or more database structure identities included
within a program, which is described in more detail below.
In some embodiments, each software signature represents a
particular database record or groups of records with various

Jan. 18, 2018

attributes that link particular software products to databases
and database structure features, as described in more detail
below.

[0018] In some embodiments, the software DB signature
data store 110, the database 114, and/or the database 112
represent individual servers (e.g., database servers) or a
database management system utilized to process and access
the actual data within a storage device (e.g., disk or Random
Access Memory (RAM)) of the respective computing
devices. The software DB signature data store 110 may be a
data store that includes each software signature. The data-
base 114 may be a particular database (e.g., a Structured
Query Language (SQL) database) that is coupled to the
computing device 106 (e.g., via shared memory). The DB
structure component list 114A may include the structural
information of the database 114.

[0019] The database 112 may also be a particular database
that is coupled to the computing device 104. The DB
structure component list 112A may also include the struc-
tural information of the database 112. In some embodiments,
the DB structure component list 112A and/or 114A may be
fingerprints or signatures for their respective databases such
that when trying to determine database structures of a
database, it may easily be identifiable via the fingerprint
(e.g., a database manager does not have to scan an entire
database to obtain structure components). In alternative
embodiments, the DB structure component list 112A and/or
114A may represent a consolidated list of structural infor-
mation after each database manager of a database (e.g.,
database 114) has scanned the database to retrieve the
structural information in response to a particular request.

[0020] The computing devices 102, 104 and/or 106 may
communicate with another via any suitable network 108. For
example, the network 108 may represent a local area net-
work (LAN), a general wide area network (WAN), a cellular
network, and/or a public network (e.g., the Internet).

[0021] Insome embodiments, FIG. 1 illustrates that a user
120 (e.g., an administrator) may be desirous to query the
databases 114 and/or 116 in order to determine what par-
ticular program the DB structure component list 114A and/or
112 A belongs to, which is described in more detail below. In
other embodiments, automated functions may be performed
as a background task (e.g., without the user 120 requesting
information), such that upon detection of an event, one or
more operations may be performed, as described in more
detail below.

[0022] FIG. 2 is a diagram illustrating how structural
information of a database may be obtained and compared
with a software signature, according to embodiments. In
some embodiments, as illustrated in FIG. 2, the user 120
may send a query request to the database 114 to obtain the
structural information of the database 114. For example,
after establishing a wireless connection with the computing
device 106, the user 120 may manually enter a query
statement (e.g., SELECT attribute list FROM table list
WHERE condition) on the computing device 102 to request
one or more database structure information of database 114.
The database manager of the database 114 may then scan the
database 114 in order to provide the DB structure component
list 114A according to the query request. Alternatively, the
DB structure component list 114A may be a pre-formed list
or fingerprint such that the database manager does not have

US 2018/0018365 Al

to scan the database 114 to obtain structural information, but
may identify and select the DB structure component list
114A.

[0023] The query language may be any suitable language,
such as structured query language (SQL) for relational
databases, multidimensional expression (MDX) for multi-
dimensional databases or online analytical procession
(OLAP) databases, online transactional processing data-
bases (OLTP), or any other language for any other database.
[0024] The computing device 106 of the database 114 may
then transmit the DB structure component list 114A to the
computing device 102 such that the DB structure component
list 114 A can then be compared (e.g., via the match estimate
module 104) with the software signatures within the soft-
ware DB signature data store 110 in order to infer that the
database 114 is likely included in a particular software
product or program, which is described in more detail below.
Although FIG. 2 illustrates how structural information may
be obtained from the database 114, it is to be understood that
the same or analogous procedures can also occur to obtain
structural information from the database 112 of FIG. 1.
[0025] FIG. 3 is a diagram illustrating what a software
signature and database structural information may include
and how this information may be compared, according to
embodiments. FIG. 3 includes the software DB signature
data store 110, which includes the table 303, FIG. 3 further
includes the DB structure component list 114A, which
includes the table 305. Although FIG. 3 illustrates that that
only a particular data store (software DB signature data store
110) and list (DB structure component list 114A) include the
tables 303 and 305, it is recognized that more data stores and
lists may include identical or analogous tables to the tables
303 and 305. For example, database 112 of FIG. 1 may
include within its DB structure component list 112A, a table
identical or analogous to the table 305.

[0026] In embodiments, the table 303 represents a data-
base table object with multiple columns (also known as
fields or attributes) and records. In some embodiments, each
record represents a software signature such that particular
software identity (e.g., a name of a software product) is
mapped to one or more associated database structure iden-
tities. For example, the first record includes software name
“A” that is mapped to various other features via the other
columns that are part of the first record (e.g., software A is
mapped to schema D that includes tables Dd). Therefore,
mapping may include that relationship between various
columns within a single record (or series of records).
[0027] As illustrated in the table 303, the software signa-
tures include various columns of data, such as “software
Name,” “Version,” “OS” (operating system), “database
name,” “Schema,” “Tables,” “Columns,” “Relations,”
“Node Types” and “Relation Type.” A “software name” may
be or include a name or identifier for a software product/
program/application, etc. As disclosed herein, the terms
“name” and/or “identifier” may refer to a string(s) and/or
integer(s) that are associated with a particular attribute(s)
(e.g., column). In an example illustration, the software name
column may specify the name of a downloadable application
(e.g., a personal taxes application). The “version” column
may be or include a particular version of the software
specified under the software name column. This column
recognizes that there may be various iterations of a particu-
lar program product/application. For example, software
name “A” may have versions Al, A2, and A3. The OS

Jan. 18, 2018

column may specify what operating system manages the
software specified under the “software name” and/or “ver-
sion” column. The “database name” column may specify the
name or identifier of a database (e.g., DB2, Oracle, etc.) that
the particular software includes or uses.

[0028] The rest of the columns of the table 303 may
include various database structural information concerning
the database specified under the “database name” column.
The “Schema” column, for example, may describe how the
data is organized within the particular database specified
under the database name column. A database “schema” may
specifically be a set of integrity constraints that are imposed
on a database. In some embodiments, the “Schema” column
or schema information may depict a graphical or logical
representation of a database structure, the structure of which
includes information concerning how each database object is
related. For example, in a rational database, the schema may
define or depict each table, field, relationship, view, index,
package, procedure, function, queue, trigger, type, sequence,
synonym, database link, and/or directory that is included in
a particular database. In some embodiments, instead or in
addition to graphically representing the schema, the
“schema” column or schema information may include data-
base language textual information in a data dictionary that
describes database objects and/or relationships. Schema
information may include information such as the number of
tables, object, nodes, records, etc. in the database and the
relationships between them. In an example illustration. the
“schema column” may indicate that a first schema represents
a “star” schema and that a second schema represents a
“snowflake” schema.

[0029] The “table” column includes information about one
or more tables of a database specified in the “database name”
column. This information may include table structure infor-
mation associated with a particular database table. For
example, table structure information may include: the name
or other identifier of a table, the number of columns that are
within the table, etc. The “column” column specifies column
structure information about one or more columns within the
table specified under the “table” column. For example,
column structure information may include a name or other
identifier of one or more columns, the size constraints of one
or more columns (e.g., column string width/length and/or
number of bytes of data to be placed in one or more
columns). For example, column size may define fixed string
length (e.g., nchar) allowed for data entry into each column.
[0030] The “keys” column or other database structure
information may specify structure information about keys
(e.g., primary and/or foreign keys) for a particular column.
A “primary” key may be a column that uniquely identifies
each record and only one may exist per table. The structural
information may include the name or identifier of the
primary key attribute (e.g., “social security number”), the
size of the key column, etc. A “foreign” key may be one or
more columns in a first table that provides a link between
data of a second table. For example, in a relational database,
a foreign key from a first table may point to or refer to a
primary key in a second table. The key column or database
structural information may specifically include a name or
identifier of the foreign key (column) for a particular table.
[0031] It is recognized that the table 303 may include
structure information associated with various database types
(e.g., relational databases, graph or other object oriented
databases, hierarchical databases, network databases, online

US 2018/0018365 Al

transaction processing (OLTP) databases, online analytical
processing (OLAP) databases, etc.). For example, as illus-
trated in the table 303, there may the columns of “nodes,”
“relationships,” and “properties,” which may correspond to
graph databases. An object-oriented database utilizes object-
oriented programming languages and may include data (e.g.,
sound/video data and methods describing what to do with
data) that is stored as objects, as opposed to storing strings
or integers in two-dimensional arrays in tables that include
rows and columns like in a relational database. Each one of
these objects may belong to an object class. An object class
may share one or more objects a common structure and/or
behavior.

[0032] The “node” column may represent each name,
identifier, or label (e.g., object) of each node, the size of the
node, how many nodes exist, etc. For example, the label of
a first node may be “person.” The “properties” column may
represent attributes or metadata associated with particular
nodes, such as keys or key pairs. For example, using the
illustration above, the first node labeled “person” may
include “name: John,” and “id: 1”. The “relationships”
column may specify how two particular nodes (e.g., a “start”
node and “end” node) are related, which may be analogous
1o relational databases that utilize keys to demonstrate how
two tables are related. The structural information that may
be obtained is the name or identifier of the relationship, the
direction of the relationship, etc. The name or identifier of
the relationship may indicate a verb action associated with
two nodes. For example, using the illustration above, the
first node of “person,” and key “John” may include a
relationship named “works at,” and that points or refers to a
second node named “business,” with a key named “super-
market A.” Accordingly, these two nodes along with the
relationship indicates that “John” “works at” “supermarket
A”

[0033] In various embodiments, the table 303 (or table
305) includes more columns than illustrated in FIG. 3. For
example, there may be more columns that correspond with
more database types (e.g., hierarchical databases, network
databases, online transaction processing (OLTP) databases,
online analytical processing (OLAP) databases, efc.)
depending on the software utilized. For example, the table
303 and/or 305 may include database structure information
about a record (e.g., name) of a parent or child data object
and/or a link in a hierarchical or network database. In some
embodiments, there may be more columns in table 303
and/or 305 that include various other database structure type
of information. For example, there may be structure infor-
mation that includes information about indexes (e.g., name
of index, type of index, organization or graphical layout of
the index, record boundaries of the index, eftc.), views,
statistical information for query optimization (e.g., histo-
gram specifications, bucket specifications), etc.

[0034] FIG. 3 also includes the DB structure component
list 114A, which includes the structural information about
database 114. The structural information is represented by
the table 305. The table 305 includes column data about:
“schema,” “tables,” “columns,” and “keys.” In embodi-
ments, this header information (i.e., schema, tables, col-
umns, keys) in table 305 may include the same or analogous
types of information as discussed above for the table 303 for
the software signatures (e.g., schema, tables, column, keys,
etc.). For example, the “columns” column in table 305 may
include a name or other identifier of one or more columns,

Jan. 18, 2018

the size constraints of one or more columns (e.g., column(s)
string width/length and/or number of bytes of data to be
placed in one or more columns) for the database 114, which
may be the same type of information that the “columns”
column in the table 303 includes as discussed above.

[0035] Insome embodiments, the structural information in
table 305 is compared to the software signatures in table 305
in order to determine what software product is associated
with the DB structure component list 114A. For example, in
some embodiments, each column of the table 305 may be
compared to each record (software signature) of a corre-
sponding database structure column within the table 303
(i.e., schema, tables, columns, keys, nodes, relationships,
properties), and a first match estimate may be calculated for
that record in a particular column (e.g., a percentage match).
And then an inference may be made that the structure
information in the table 305 is associated with a particular
database.

[0036] In an example illustration, table 305 indicates that
the schema of database 1114 is D. When compared with the
“schema” column of table 303, there is a match of 100%
with the first record (corresponding to software A) because
the schema is also D. However, there is a 0% match for the
second and third records within table 303 because the
schema for software B and C is schema E and F schema
respectively. Likewise, the table 305 indicates that the
database 114 includes the tables value of “Dd.” When
compared to the table values under the “tables” column of
table 303, there is once again a 100% match associated with
the first record because software A includes the tables value
of “Dd.” And again, there is a 0% match for Software B and
C because these softwares include tables Ee and no tables
respectively. Table 305 also indicates that the database
includes the columns of “Dda,” “Ddb” “Ddc” and “Dde.”
However, when comparing this to the “columns” column of
table 303, there may not be a 100% match with any record.
This may be because users may generate customized col-
umns outside of a default databases setting. Accordingly, for
the first record there may be a 75% match instead of a 100%
match because the column of “Dde” of table 305 may have
been added or customized by a particular user. There may
also be a 0% match between the columns of table 305 and
the second and third records (softwares B and C) of table
303. The “keys” column of table 305 may indicate that the
database includes key “a” and when compared with the
“keys” column of table 303 there may be a 100% match with
software A (because of the “a” value), and a 0% percent
match when compared with the second and third records.
The table 305 illustrates that there is no structural compo-
nents of the database 114 that are associated with nodes,
relationships, or properties (i.e., graph databases). Accord-
ingly, there may be a 0% match between the DB structure
component list 114A and any record under the columns of
“nodes,” “relationships,” and “properties,” which indicates
that the database 114 is not a graph database.

[0037] An inference can be made after all of these calcu-
lations to determine what particular software the database
114 belongs to. For example, given that there is a 100%
match between each of the columns of the table 305 and
each of the database structure columns for Software A of the
table 303, except for the “columns” columns, and given that
there is a 0% match between the table 305 and each of the
records for softwares B and C for each column, it may be
inferred that the database 114 includes structural compo-

US 2018/0018365 Al

nents that are part of software product A, version Al, OS
Linux, and database DB2. In some embodiments, the match
estimate may include combining or scoring each individual
percentage matching score (by the record and column as
shown above) to generate a larger score. For example, for
the first record (software A), given that there is a 100%
match between the “schema,” “tables,” and “keys” columns
and a 75% match of the “columns” column, a match estimate
may indicate that the DB structure component list 114A
matches up with software A’s database at 93.75% (3.75/4),
whereas there is a 0% match with softwares B and C.

[0038] In some embodiments, generating a match estimate
may be or include dynamic scoring as opposed to statically
calculating match percentages as described above. For
example, given that it may be common for users to generate
or customize their own columns outside of a default setting
(e.g., columns “Dde”), this data may be weighted lower
(prioritized lower) or include a score offset such that it is not
as important of a factor when determining which product
belongs to which database. Conversely, other data (e.g.,
schema, particular tables indicating database type) may be
scored or weighted higher if it indicates that users cannot or
have a small likelihood of changing data. For example, a
user cannot change a data table of a relational database into
a node of a graph database. Accordingly, schema informa-
tion or database structure type may be weighted higher than
individual data structures within a particular schema.

[0039] Insomeembodiments, the table 303 in the software
DB signature data store 110 represents a self-referential
logical database model where every single entity is stored in
a single table (table 303), as opposed to multiple tables or
other structures. In other embodiments however, the table
303 may be illustrative only for visualization purposes and
may correspond to other database types. For example, the
“schema,” “tables,” and “columns” columns may be
included in a first table within a relational database and the
“nodes,” “relationships,” and “properties” may correspond
to a second table within the same relational database. In
other embodiments, the table 303 may represent information
as found in any other type of database such as a network
database, a hierarchical database, object-oriented database,
etc.

[0040] FIG. 4 is a flow diagram of an example process 400
for determining that a database is likely included in a
particular program or software product based on comparing
structural information of the database with software signa-
tures, according to embodiments. In some embodiments, the
process 400 may begin per block 401 when a user (e.g., an
administrator) sends a first query request to obtain structural
information of or concerning a first database. The structural
information may include any information as specified, for
example, in FIG. 3 such as schema structure, table structure,
column structure, etc. of the first database. In alternative
embodiments, however, block 401 may not occur such that
the receiving of a first set of metadata in block 403 may
occur as an automated or background task (e.g., without a
user request). For example, a computing device associated
with the first database may include a counter that is set to
transmit structural information concerning the first database
every X period of time. Or the computing device associated
with the first database may transmit the structural informa-
tion based on a particular event, such as the structural
components of the first database changing above a threshold,
which is described in more detail below.

Jan. 18, 2018

[0041] Per block 403, the first set of metadata may be
received. The first set of metadata may include the structural
information about the first database. In embodiments, the
receiving of the first set of metadata may be in response to
the query statement generated by a user in block 401 and the
structural information may be initially located on a remote
database. Accordingly, the receiving of the first set of
metadata may be received via a network. For example,
referring to FIG. 1, the user 120 may transmit a query
request from the computing device 102 over the network
108 to obtain structural information from the database 112.
The DB structure component list 112A may then respon-
sively be transmitted back to the computing device 102 via
the network 108.

[0042] Per block 405, the structural information of the first
database may then be compared (e.g., by the match estimate
module 104) with one or more software signatures. Each
software signatures may include at least a software identity
that is mapped to one or more database structure identities.
For example, in FIG. 3, the software name of A is mapped
to schema “D” and tables “Dd.” via the table 303. In various
embodiments, each software signature may include various
other information about a particular software product and
databases that are a part of the particular software product
(e.g., name of software, version of software, database name
included in the software, database structure such as schema,
tables, keys, etc.). For example, each software signature may
include some or all of the information as specified in FIG.
3

[0043] In some embodiments, in addition, based on, or as
part of the comparing function in block 405, a first match
estimate may be generated (e.g., by the match estimate
module 104). This first match estimate may be made in order
to determine what software product the first database
belongs to (or is a part of, is associated with, etc.). For
example, as described in FIG. 3 above, each element of the
DB structure component list 114 may be compared with
each element of each particular software product’s database
to see how closely database structures (e.g., schema, tables,
column, keys, etc.) match database structures for a particular
software product. And based on this comparing of the
structural information of the database 114 with the software
signatures, a first match estimate may be generated.

[0044] Per block 407, it may be determined (or inferred)
that the first database is likely included in (or belongs to) a
particular software product based on the comparing (and/or
generating of the match estimate). In other words, a par-
ticular software product or software identity associated the
first database may be determined, ascertained, and/or con-
firmed based on the comparing of the structural information
of the first database with the one or more software signa-
tures.

[0045] Per block 409, it may be determined (e.g., by the
first database) whether one or maore structural components of
the first database (corresponding to the structural informa-
tion) has changed above a threshold (e.g., a table schema has
changed, various table names have changed, etc.). For
example, a software product may have been upgraded and
the upgrade may include changes to the software product’s
database. Accordingly, a database manager may detect these
changes and may be configured to transmit a message to an
administrator’s computing device when such changes over a
threshold have been met. For example, in block 409 if the
structural components of the first database have changed

US 2018/0018365 Al

above a threshold, a computing device (e.g., computing
device 104) may transmit information that indicates that one
or more structural components of the first database have
been changed above a threshold. The administrator’s com-
puting device (e.g., computing device 102) may then
request, in response to the receiving of information that
indicates that one or more structural components of the first
database have changed above a threshold, a second set of
metadata that includes structural information about the first
database. In some embodiments, this request may be a query
request by an administrator. In other embodiments, the
request may be an automated task such that it may occur
with or without an administrator query or permission.

[0046] Per block 411, the second set of metadata may be
received that includes the structural information about the
first database. Blocks 405 through 411 may then be repeated
for the second set of metadata. For example, per block 405,
a second match estimate may be generated based on com-
paring the structural information of the second set of meta-
data with the one or more software signatures. In some
embodiments, at block 409, the structural components of the
first database may have changed above a threshold, based on
the receiving of the second set of metadata. Consequently, an
update may be made to the determining (or inferring) that
the first database is likely included in a first software product
by determining (or inferring) that the first database is likely
included in a second software product based on the gener-
ating of the second match estimate or comparing. For
example, as discussed above, a software product Al may
have been updated to A2, which may be considered a
different program or software product. The reflection of this
update may cause the program’s database structural features
to change. An administrator may take not of this database
structure change and try to map the change to the change in
program product as described above.

[0047] FIG. 5 is a diagram illustrating how a software
signature may be represented, according to embodiments. In
some embodiments, instead of or in addition to the table 303
as described in FIG. 3, software signatures may be repre-
sented by the schema 500 as illustrated in FIG. 5. For
example, the schema 500 may represent a relational database
that includes various tables (relations) of data-501, 503, 505,
507,509, 511, 513, 515, 517. The schema 500 also illustrates
how each table is related (e.g., via the lines that link a
primary key in one table to a foreign key in another table).

[0048] The “TYPE” Table 501 represents a database lan-
guage type for different databases that may be present on a
source database (e.g., a database an administrator is working
with). For example, the database language type may be
Structured Query Language (SQL) (associated with rela-
tional databases), a Non-SQL (NoSQL) (associated with
non-relational databases, such as graph databases), etc. The
primary key of table 501 may be the “ID.” The “NAME”
data may specify the name of the database (e.g., SQL).

[0049] The “SIGNATURE” table 503 represents a soft-
ware signature, which includes some or all of the data from
each of the other tables—table 501, 505, 507, 509, 511, 513,
515, and/or 517. For example, the table 503 may include the
“TYPE_ID” foreign key, which may be the primary key of
the “TYPE” table 501. The table 503 may also include
“QUERY” and “CONFIDENCE” data that includes infor-
mation about the signature query and confidence of the
signature query.

Jan. 18, 2018

[0050] The “SIG_DB” (signature database) table 505
illustrates a signature (e.g., an ID, hash, string, alphanumeric
text) that represents a database type. The primary key may
be “SIG_ID” (signature 1D) and the foreign key may be
“DB_ID” (database 1D), which corresponds to the “DATA-
BASE” table 507’s primary key. The “DATABASE” table
507 may include information about a database type (e.g.,
DB2, Informix, etc.). In embodiments, the table 507 may
correspond to the information an administrator may input
about a particular database that he/she has access to. The
Primary key may be the “ID” and the table 507 may
specifically include “NAME” field that specifies the name of
a database for each record (e.g., DB2) and a “VERSION”
field that specifies a version of the database name (e.g., DB2
version 5.0).

[0051] The “SIG_OS” (signature operating system) table
509 illustrates a signature that represents an operating sys-
tem type (e.g., of a particular software product). The primary
key may be “SIG_ID” and the foreign key may be “OS_ID,”
which corresponds to the “OPERATING SYSTEM” table
511’s primary key. The “OPERATING SYSTEM” table 511
may include information about an operating system type
(e.g., WINDOWS, RED HAT LINUX, etc.). The primary
key of 511 may be “ID” and the table 511 may specifically
include a “NAME” field (e.g., LINUX) and a version field
(e.g., RED HAT ENTERPRISE LINUX Server Release 5).
[0052] The “SIG_VER” (signature version) table 513
illustrates a signature that represents a software product
version. The primary key may be “SIG_ID” and the foreign
key may be “VER_ID” (version ID), which corresponds to
the “VERSION?” table 515’s primary key. The “VERSION”
table 515 may include information about a version of a
particular software product. The table 515 may include a
primary key field of “ID” and have a foreign key field of
“SOFT_ID” (software ID), which may correspond to the
primary key of the “SOFTWARE PRODUCT” table 717.
The table 515 may also include a “VERSION” field and a
“DEFAULT_DB_NAME” field. The “SOFTWARE PROD-
UCT” table 517 may include information about a software
product. The table 517 may include a primary key of “ID”
and another field of “NAME,” which specifies the name of
a particular software product.

[0053] In an example illustration of how a software sig-
nature may be derived, a database administrator may desire
to know what software product is associated with a database
he/she is working with. Accordingly, the administrator may
input a query to the database that specifies the name and
version of a particular database and/or anything within the
DB structure component list 114A of FIG. 3 (e.g., tables,
columns, etc.). The database manager of that database may
then responsively fetch one or more records within the table
to execute the query.

[0054] This query from the administrator may then be
matched to a particular software product associated with the
schema 500. The table 503 may include the “QUERY” from
the administrator, which may correspond to one or more
record values for a particular set of fields or columns that the
administrator chose for the query. For example, a first record
may include values associated with the query under a “table”
column (e.g., Dd) and under a “column” column (e.g., Dda).
The first record may also include or be associated with other
values that correspond to the particular software product
(e.g., information derived from the tables 509, 511, 513, 515,
and/or 517). A matching estimate or “CONFIDENCE” may

US 2018/0018365 Al

be performed the same as or analogous to the matching of
the DB structure component list 114A and table 303 of FIG.
3. In some embodiments, table 503 of FIG. 5 represents or
includes the information in the table 303 of FIG. 3. In some
embodiments, any process or operation performed as
described in FIG. 3 can also be performed for FIG. 5.

[0055] FIG. 6 is a block diagram of a computing device
600 that includes a match estimate module 604, according to
embodiments. The components of the computing device 600
can include one or more processors 06, a memory 12, a
terminal interface 18, a storage interface 20, an Input/Output
(“1/0”) device interface 22, and a network interface 24, all
of which are communicatively coupled, directly or indi-
rectly, for inter-component communication via a memory
bus 10, an I/O bus 16, bus interface unit (“IF”) 08, and an
/O bus interface unit 14.

[0056] The computing device 600 may include one or
more general-purpose programmable central processing
units (CPUs) 06A and 06B, herein generically referred to as
the processor 06. In an embodiment, the computing device
600 may contain multiple processors; however, in another
embodiment, the computing device 600 may alternatively be
a single CPU device. Each processor 06 executes instruc-
tions stored in the memory 12 (e.g., the affinity module 518
and the failover module 520 instructions).

[0057] The computing device 600 may include a bus
interface unit 08 to handle communications among the
processor 06, the memory 12, the display system 04, and the
1/O bus interface unit 14. The 1/0 bus interface unit 14 may
be coupled with the 1/O bus 16 for transferring data to and
from the various I/O units. The I/O bus interface unit 14 may
communicate with multiple IO interface units 18, 20, 22,
and 24, which are also known as I/O processors (IOPs) or
1/O adapters (I0As), through the I/O bus 16. The display
system 04 may include a display controller, a display
memory, or both. The display controller may provide video,
audio, or both types of data to a display device 02. The
display memory may be a dedicated memory for buffering
video data. The display system 04 may be coupled with a
display device 02, such as a standalone display screen,
computer monitor, television, a tablet or handheld device
display, or another other displayable device. In an embodi-
ment, the display device 02 may include one or more
speakers for rendering audio. Alternatively, one or more
speakers for rendering audio may be coupled with an /O
interface unit. In alternate embodiments, one or more func-
tions provided by the display system 04 may be on board an
integrated circuit that also includes the processor 06. In
addition, one or more of the functions provided by the bus
interface unit 08 may be on board an integrated circuit that
also includes the processor 06.

[0058] The I/O interface units support communication
with a variety of storage and I/O devices. For example, the
terminal interface unit 18 supports the attachment of one or
more user I/O devices, which may include user output
devices (such as a video display devices, speaker, and/or
television set) and user input devices (such as a keyboard,
mouse, keypad, touchpad, trackball, buttons, light pen, or
other pointing devices). A user may manipulate the user
input devices using a user interface, in order to provide input
data and commands to the user I/O device 26 and the
computing device 600, may receive output data via the user
output devices. For example, a user interface may be pre-

Jan. 18, 2018

sented via the user /O device 26, such as displayed on a
display device, played via a speaker, or printed via a printer.
[0059] The storage interface 20 supports the attachment of
one or more disk drives or direct access storage devices 28
(which are typically rotating magnetic disk drive storage
devices, although they could alternatively be other storage
devices, including arrays of disk drives configured to appear
as a single large storage device to a host computer, or
solid-state drives, such as a flash memory). In another
embodiment, the storage device 28 may be implemented via
any type of secondary storage device. The contents of the
memory 12, or any portion thereof, may be stored to and
retrieved from the storage device 28 as needed. The storage
devices 28 may be employed to store any of the databases
described herein, including databases 110, 112, and 114. The
/O device interface 22 provides an interface to any of
various other I/O devices or devices of other types, such as
printers or fax machines. The network interface 24 provides
one or more communication paths from the computing
device 600 to other digital devices and computer systems.
[0060] Although the computing device 600 shown in FIG.
6 illustrates a particular bus structure providing a direct
communication path among the processors 06, the memory
12, the bus interface 08, the display system 04, and the [/O
bus interface unit 14, in alternative embodiments the com-
puting device 600 may include different buses or commu-
nication paths, which may be arranged in any of various
forms, such as point-to-point links in hierarchical, star or
web configurations, multiple hierarchical buses, parallel and
redundant paths, or any other appropriate type of configu-
ration. Furthermore, while the I/O bus interface unit 14 and
the I/O bus 08 are shown as single respective units, the
computing device 600, may include multiple I/O bus inter-
face units 14 and/or multiple I/O buses 16. While multiple
/O interface units are shown, which separate the I/O bus 16
from various communication paths running to the various
17O devices, in other embodiments, some or all of the I/O
devices are connected directly to one or more system 1/O
buses.

[0061] Invarious embodiments, the computing device 600
is a multi-user mainframe computer system, a single-user
system, or a server computer or similar device that has little
or no direct user interface, but receives requests from other
computer systems (clients). In other embodiments, the com-
puting device 600 may be implemented as a desktop com-
puter, portable computer, laptop or notebook computer,
tablet computer, pocket computer, telephone, smart phone,
or any other suitable type of electronic device.

[0062] In an embodiment, the memory 12 may include a
random-access semiconductor memory, storage device, or
storage medium (either volatile or non-volatile) for storing
or encoding data and programs. In another embodiment, the
memory 12 represents the entire virtual memory of the
computing device 600, and may also include the virtual
memory of other computer systems coupled to the comput-
ing device 600 or connected via a network 30. The memory
12 may be a single monolithic entity, but in other embodi-
ments the memory 12 may include a hierarchy of caches and
other memory devices. For example, memory may exist in
multiple levels of caches, and these caches may be further
divided by function, so that one cache holds instructions
while another holds non-instruction data, which is used by
the processor. Memory 12 may be further distributed and
associated with different CPUs or sets of CPUs, as is known

US 2018/0018365 Al

in any various so-called non-uniform memory access
(NUMA) computer architectures.

[0063] The memory 12 may store all or a portion of the
components and data (e.g., match estimate module 604)
shown in FIG. 6. These programs and data are illustrated in
FIG. 6 as being included within the memory 12 in the
computing device 600; however, in other embodiments,
some or all of them may be on different computer systems
and may be accessed remotely, e.g., via a network 30. The
computing device 600 may use virtual addressing mecha-
nisms that allow the programs of the computing device 600
to behave as if they only have access to a large, single
storage entity instead of access to multiple, smaller storage
entities. Thus, while the components and data shown in FIG.
6 are illustrated as being included within the memory 12,
these components and data are not necessarily all completely
contained in the same storage device at the same time.
Although the components and data shown in FIG. 6 are
illustrated as being separate entities, in other embodiments
some of them, portions of some of them, or all of them may
be packaged together.

[0064] In embodiments, the components and data shown
in FIG. 6 may include instructions or statements that execute
on the processor 06 or instructions or statements that are
interpreted by instructions or statements that execute on the
processor 06 to carry out the functions as described above.
For example, the match estimate module 604 may be pro-
gram instructions that when execute on the processor 06 to
perform some or all of the blocks in FIG. 4, FIG. 5 (or any
other operation described herein). In another embodiment,
the components shown in FIG. 6 may be implemented in
hardware via semiconductor devices, chips, logical gates,
circuits, circuit cards. and/or other physical hardware
devices in lieu of, or in addition to, a processor-based
system. In an embodiment, the components shown in FIG.
6 may include data in addition to instructions or statements.
[0065] FIG. 6 is intended to depict representative compo-
nents of the computing device 600. Individual components,
however, may have greater complexity than represented in
FIG. 6. In FIG. 6, components other than or in addition to
those shown may be present, and the number, type, and
configuration of such components may vary. Several par-
ticular examples of additional complexity or additional
variations are disclosed herein; these are by way of example
only and are not necessarily the only such variations. The
various program components illustrated in FIG. 6 may be
implemented, in various embodiments, in a number of
different ways, including using various computer applica-
tions, routines, components, programs, objects, modules,
data pages etc., which may be referred to herein as “soft-
ware,” “computer programs,” or simply “programs.”
[0066] Aspects of the present invention may be a system,
a method, and/or a computer program product. The com-
puter program product may include a computer readable
storage medium (or media) having computer readable pro-
gram instructions thereon for causing a processor to carry
out aspects of the various embodiments.

[0067] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination

Jan. 18, 2018

of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0068] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0069] Computer readable program instructions for carry-
ing out operations of embodiments of the present invention
may be assembler instructions, instruction-set-architecture
(ISA) instructions, machine instructions, machine dependent
instructions, microcode, firmware instructions, state-setting
data, or either source code or object code written in any
combination of one or more programming languages,
including an object oriented programming language such as
Smalltalk, C++ or the like, and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The computer
readable program instructions may execute entirely on the
user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote
computer or server. In the latter scenario, the remote com-
puter may be connected to the user’s computer through any
type of network, including a local area network (LAN) or a
wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider). In some embodiments,
electronic circuitry including, for example, programmable
logic circuitry, field-programmable gate arrays (FPGA), or
programmable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of
embodiments of the present invention.

[0070] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer

US 2018/0018365 Al

program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0071] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0072] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0073] The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
[0074] The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
1o the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

Jan. 18, 2018

What is claimed is:

1. A computer-implemented method for determining a
software identity based on a database structure, the method
comprising;

receiving, by a computing device and via a network, a first

set of metadata that includes structural information
about a first database;
comparing, by the computing device, the structural infor-
mation with one or more software signatures, each
software signature including a software identity that is
mapped to one or more associated database structure
identities;
generating, by the computing device, a first match esti-
mate based on the comparing of the structural infor-
mation with the one or more software signatures; and

inferring, by the computing device, that the first database
is likely included in a first software product based on
the generating of the match estimate.

2. The method of claim 1, wherein the one or more
software signatures includes one or more units of data
selected from a group consisting of: a name of a software,
a version of the software, an operating system installed on
the software, a second database that the software uses, a
schema structure of the second database, a table structure of
the second database, a column structure of the second
database, and a key structure of the second database.

3. The method of claim 1, wherein the generating a match
estimate includes calculating a percentage that a first set of
data derived from each table column of the first database
matches a second set of data derived from each table column
of a second database, the second database including the one
or more software signatures.

4. The method of claim 1, wherein the structural infor-
mation of the first database includes one or more units of
data from a group consisting of. a schema structure of the
first database, a table structure of the first database, a column
structure of the first database, a key structure of the first
database.

5. The method of claim 1, further comprising: sending,
prior to the receiving, a query request to the first database to
obtain the structural information of the first database.

6. The method of claim 1, further comprising:

receiving information indicating that one or more struc-
tural components of the first database has changed
above a threshold;

requesting, as an automated task and in response to the
receiving of information indicating that one or more
structural components of the first database has changed
above a threshold, a second set of metadata that
includes structural information about the first database;
and

comparing the structural information of the second set of
metadata with the one or more software signatures.

7. The method of claim 6, further comprising:

generating a second match estimate based on the com-
paring of the structural information of the second set of
metadata with the one or more software signatures; and

updating the inferring that the first database is likely
included in the first software product by inferring that
the first database is likely included in a second software
product based on the generating of the second match
estimate.

US 2018/0018365 Al

8. A system comprising:
a computing device having a processor; and
a computer readable storage medium having program
instructions embodied therewith, the program instruc-
tions readable/executable by the processor to cause the
system to perform a method, the method comprising;

receiving, via a network, metadata that includes structural
information about a first database;

comparing the structural information with one or more

software signatures, each software signature including
a software identity that is mapped to one or more
associated database structure identities;

generating a first match estimate in order to determine

what software product the first database belongs to, the
generating being based on the comparing of the struc-
tural information with the one or more software signa-
tures; and

determining that the first database likely belongs to a first

software product, the determining being based on the
generating of the first match estimate.

9. The system of claim 8, wherein the one or more
software signatures includes one or more units of data
selected from a group consisting of: a name of a software,
a version of the software, an operating system installed on
the software, a second database that the software uses, a
schema structure of the second database, a table structure of
the second database, a column structure of the second
database, and a key structure of the second database.

10. The system of claim 8, wherein the generating a first
match estimate includes calculating a percentage that a first
set of data derived from each table column of the first
database matches a second set of data derived from each
table column of a second database, the second database
including the one or more software signatures.

11. The system of claim 8, wherein the structural infor-
mation of the first database includes one or more units of
data from a group consisting of: a schema structure of the
first database, a table structure of the first database, a column
structure of the first database, a key structure of the first
database.

12. The system of claim 8, the method further comprising:
sending, prior to the receiving, a query request to the first
database to obtain the structural information of the first
database.

13. The system of claim 8, the method further comprising:

receiving information indicating that one or more struc-

tural components of the first database has changed
above a threshold;

requesting, as an automated task and in response to the

receiving of information indicating that one or more
structural components of the first database has changed
above a threshold, a second set of metadata that
includes structural information about the first database;
and

comparing the structural information of the second set of

metadata with the one or more software signatures.

14. The system of claim 13, the method further compris-
ing:

generating a second match estimate based on the com-

paring of the structural information of the second set of
metadata with the one or more software signatures; and
updating the determining that the first database likely
belongs to a first software product by determining that

10

Jan. 18, 2018

the first database likely belongs to a second software
product based on the generating of the second match
estimate.

15. A computer program product comprising a computer
readable storage medium having program code embodied
therewith, the program code executable/readable by a com-
puting device to:

receive metadata indicating structural information of a
first database;

compare the structural information with one or more
software signatures, each software signature including
a software identity that is mapped to one or more
associated database structure identities; and

determine a first software identity that is associated with
the first database, the determining being based on the
comparing of the structural information with one or
more software signatures.

16. The computer program product of claim 15, wherein
the one or more software signatures includes one or more
units of data selected from a group consisting of: a name of
a software, a version of the software, an operating system
installed on the software, a second database that the software
uses, a schema structure of the second database, a table
structure of the second database, a column structure of the
second database, and a key structure of the second database.

17. The computer program product of claim 15, wherein
the comparing includes generating a match estimate by
calculating a percentage that a first set of data derived from
each table column of the first database matches a second set
of data derived from each table column of a second database,
the second database including the one or more software
signatures.

18. The computer program product of claim 15, wherein
the structural information of the first database includes one
or more units of data from a group consisting of: a schema
structure of the first database, a table structure of the first
database, a column structure of the first database, a key
structure of the first database.

19. The computer program product of claim 15, wherein
the program code is further executable/readable by the
computing device to:

receive information indicating that one or more structural
components of the first database has changed above a
threshold;

request, as an automated task and in response to the
receiving of information indicating that one or more
structural components of the first database has changed
above a threshold, a second set of metadata that
includes structural information about the first database;
and

compare the structural information of the second set of
metadata with the one or more software signatures.

20. The computer program product of claim 19, wherein
the program code is further executable/readable by the
computing device to:

compare the structural information of the second set of
metadata with the one or more software signatures; and

update the determining the first software identity that is
associated with the first database by determining a
second software identity that is associated with the first
database, the determining a second software identity

US 2018/0018365 Al
11

being based on the comparing the structural informa-
tion of the second set of metadata with the one or more
software signatures.

E I T I R

Jan. 18, 2018

	Bibliography
	Abstract
	Drawings
	Description
	Claims

