
III III 0 III 010 1101 I0I 100 III 0111 II0I II 0I II
US010657230B2

(12) United States Patent
Hanusiak et al.

(54) ANALYSIS OF OUTPUT FILES

(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(72) Inventors: Tomasz Hanusiak, Czarny Dunajec
(PL); Konrad W. Komnata, Krak*w
(PL); Jaroslaw Osinski, Mrozy (PL);
Grzegorz Szczepanik, Krak*w (PL)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 15/819,451

(22) Filed: Nov. 21, 2017

(65) Prior Publication Data

US 2018/0307810 Al Oct. 25, 2018

Related U.S. Application Data

(63) Continuation of application No. 15/491,364, filed 011

Apr. 19, 2017.

(51) Int. C1.
G06F 21/10 (2013.01)
G06F 16/14 (2019.01)

(Continued)
(52) U.S. C1.

CPCGO6F 21/105 (2013.01); G06F 16/148
(2019.01); G06F16/1734 (2019.01); G06F

16/164 (2019.01); G06F 2221/0773 (2013.01)

700

Monitor new processes / 702
and generation of

output files for a device

pro
started?

(10) Patent No.: US 10,657,230 B2
(45) Date of Patent: *May 19, 2020

(58) Field of Classification Search
CPCGO6F 21/10; GO6F 21/50; GO6F 21/52;

GO6F 21/105; GO6F 2221/033; GO6F
2221/034; GO6F 2221/0773; GO6F

17/30106; GO6F 17/30144; GO6F 21/00;

GO6F 16/16; GO6F 16/164; HO4L
67/1002

(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

6,212,512 Bi 4/2001 Barneyetal.
7,174,341 B2 2/2007 Ghukasyan et al.

(Continued)

OTHER PUBLICATIONS

List of IBM Patents or Patent Applications Treated as Related;
(Appendix P), Filed Nov. 21, 2017; 2 pages.

(Continued)

Primary Examiner Khang Do
(74) Attorney, Agent, or Firm Cantor Colburn LLP;
Jeffrey S LaBaw

(57) ABSTRACT

Embodiments include method, systems and computer pro-

gram products for file management. Aspects include moni-
toring a device to determine an execution of a new process
011 the device. Based at least in part 011 the new process
starting, a file system is monitored for the creation of a new
file, wherein the new file includes one or more file charac-
teristics. The one or more file characteristics are compared
to a knowledge database to determine a file type for the new
file and the new file is associated with the new process based
at least in part 011 determining the file type for the new file.

5 Claims, 7 Drawing Sheets

710
708

File
known? associated process

Yes
712

Yes
generated on device

Report output file types

File?

Yes T 714 716 ___________ / /

No - Operating Yes Compareoutputfile

—< system shut types to software
down? Iicenses for device

US 10,657,230 B2
Page 2

(51) Int. C1.
GO6F 16/17 (2019.01)
GO6F 16/16 (2019.01)

(58) Field of Classification Search
USPC ...726/33; 718/1
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,005,847 B2 8/2011 Levy et al.
8,015,221 B1* 9/2011 SmithG06F17/30144

707/825
8,103,591 B2 1/2012 Bouchet
8,725,647 B2 5/2014 Disciascio et al.
8,756,201 Bi 6/2014 Dutch et al.
9,448,893 Bi * 9/2016 WhiteheadGO6F 17/30144

2006/0184507 Al 8/2006 Lefferts et al.
2009/0038018 Al * 2/2009 MikamiGO6F 21/10

726/27
2009/0124375 Al * 5/2009 PatelGO7F 17/32

463/29
2010/0082774 A1* 4/2010 PittsG06F17/30144

709/219
2010/0100565 A1* 4/2010 AdachiG06F21/10

707/781
2010/0161837 A1* 6/2010 MiyajimaG06F21/105

710/8
2011/0131315 Al 6/2011 Ferris et al.

2011/0307958 A1* 12/2011 AshtonG06F21/105
726/26

2013/0254897 A1* 9/2013 ReedyG06F21/10
726/26

2013/0262265 A1* 10/2013 SongGO6Q1O/0631
705/26.41

2013/0282755 A1* 10/2013 ProcopioG06F17/30126
707/770

2014/0137259 A1* 5/2014 ChenG06F21/105
726/26

2015/0018089 A1* 1/2015 CaldasGO7F 17/3241
463/29

2015/0150142 A1* 5/2015 AustinG06F3/1222
726/26

2016/0034492 Al * 2/2016 HarrisonGO6F 17/30091
707/652

2016/0171190 A1* 6/2016 LinG06F21/10
726/30

2016/0217147 A1* 7/2016 BoyleG06F17/30094
2017/0161662 A1* 6/2017 WangGO6Q1O/06315

OTHER PUBLICATIONS

Tomasz Hanusiak et al., "Analysis of Output Files", U.S. Appl. No.
15/491,264, filedApr. 19, 2017.
Hudson, Andrew, "The BeOS file system: an OS geek retrospec-
tive," https://arstechnica.comlinformation-technology/2010/06/the-
beos-filesysteml; Jun. 3, 2010, pp. 1-22.

* cited by examiner

U.S. Patent May 19, 2020 Sheet 1 of 7 US 10,657,230 B2

U.S. Patent May 19, 2020 Sheet 2 of 7 US 10,657,230 B2

ci
LL

U.S. Patent May 19, 2020 Sheet 3 of 7 US 10,657,230 B2

C1)c) 0

(1) I E -I
1
1 c c): I
1 0

Li1i
1

(1,
=
o (0

-------i
.c_)
E >•'_ >

1

Ec
: '

=
1 DLC) '

0
0

rn

' L 1
1:1)

1 (.9 1
1 C N

-

u..

>-

1 -

1:1) _

Ji L IH (1)

0o

Q) co

0

--

L
o -

I 1
1 1. 1

r -

I I
1 >—I
I a 1

0 I I

U.S. Patent May 19, 2020 Sheet 4 of 7 US 10,657,230 B2

(.) (.) (.)
0

. cI

U.S. Patent May 19, 2020 Sheet 5 of 7 US 10,657,230 B2

(,]

_____ 0

(/ I

Lfl

L

U.S. Patent May 19, 2020

0
QJ c

0

(1)

a)
U

0

0•

c (f)

u 0

0

0

x 0 _

ct

aj Eo

. c'

l OI
-c iL
o
1 ' 4

o
0
o

a)
- Q)
o-c

(t _
c

o
(1) r: a

4— —

0

+.

-Q

b .t q) c c
• qi c
o

o cu

Sheet 6 of 7

w

w
c

"0

1

a)
9—

w
-c

c

E
w

4—.
a)

c
0

0
c

w

w

-D
(1)
(/)
w
0
0

w
c
w
-c

0
4-.

Q)
4—

w
c
w

c

'0
0

US 10,657,230 B2

Gj
9—

w
c LD
WOC

4 —

w
>-

U.S. Patent May 19, 2020 Sheet 7 of 7 US 10,657,230 B2

C W 4- 0 5

—

>-

:9 c L)

z I
o f

.4-

4- C

—c 4. Q) .1) Q) 0
0_ - / 0>

tc2) N 0c

/ L
0 z

N
0 __ N N

v. l) o_) 0

0 Q)

-
Wu)

z

OJ 0
0 0
N

0 z

US 10,657,230 B2
1

ANALYSIS OF OUTPUT FILES

DOMESTIC PRTORITY

The present application claims priority to U.S. Non-
provisional application Ser. No. 15/491,364 filed onApr. 19,
2017, titled "ANALYSIS OF OUTPUT FILES," assigned to
the assignee hereof and expressly incorporated by reference
herein.

BACKGROUND

The present invention relates to file management, and
more specifically to a system to analyze output files.

Information technology (IT) asset management in impor-
tant for any sized organization. Assets include all elements
of software and hardware that are found in a business
environment. Organizations, typically, employ sets of busi-
ness practices that work to manage these assets with respect
to any financial, contractual, and/or inventory limitations.
An example of a contractual limitation for IT asset manage-
ment would be software licenses for software programs
residing 011 hardware assets of the organization. Any viola-
tions of software licensing can open up an organization to
legal consequences such as contractual legal claims as well
as potential claims for copyright violations.

SUMMARY

Embodiments include a computer-implemented method
for file management. The method includes monitoring a
device to determine an execution of a new process 011 the
device. Based at least in part 011 the new process starting, a
file system is monitored for the creation of a new file,
wherein the new file includes one or more file characteris-
tics. The one or more file characteristics are compared to a
knowledge database to determine a file type for the new file
and the new file is associated with the new process based at
least in part 011 determining the file type for the new file.

Embodiments include a computer system for file man-
agement, the computer system including a processor, the
processor configured to perform a method. The method
includes monitoring a device to determine an execution of a
new process 011 the device. Based at least in part 011 the new
process starting, a file system is monitored for the creation
of a new file, wherein the new file includes one or more file
characteristics. The one or more file characteristics are
compared to a knowledge database to determine a file type
for the new file and the new file is associated with the new
process based at least in part 011 determining the file type for
the new file.

Embodiments also include a computer program product
for file management, the computer program product includ-
ing a non-transitory computer readable storage medium
having computer readable program code embodied there-
with. The computer readable program code including com-
puter readable program code configured to perform a
method. The method includes monitoring a device to deter-
mine an execution of a new process 011 the device. Based at
least in part 011 the new process starting, a file system is
monitored for the creation ofa new file, wherein the new file
includes one or more file characteristics. The one or more
file characteristics are compared to a knowledge database to
determine a file type for the new file and the new file is
associated with the new process based at least in part 011

determining the file type for the new file.

2
Additional features and advantages are realized through

the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein
and are considered a part of the claimed invention. For a

5 better understanding of the invention with the advantages
and the features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

10 The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims
at the conclusion of the specification. The foregoing and
other features and advantages of the invention are apparent
from the foliowing detailed description taken in conjunction

15 with the accompanying drawings in which:
FIG. 1 depicts a cloud computing environment according

to one or more embodiments of the present invention;
FIG. 2 depicts abstraction model layers according to one

or more embodiments of the present invention;
20 FIG. 3 depicts a biock diagram of a computer system

according to one or more embodiments of the present
invention;

FIG. 4 depicts a biock diagram of a system for file
management in accordance with one or more embodiments

25 of the present invention;
FIG. 5 depicts a biock diagram of an illustrated example

for matching a generated output file to a process running 011

a device according to one or more embodiments of the
present invention;

30 FIG. 6 depicts a flow diagram of a method 600 for file
management according to one or more embodiments of the
present invention; and

FIG. 7 depicts a flow diagram of an exemplary method for
file management according to one or more embodiments of

35 the present invention.
The diagrams depicted herein are illustrative. There can

be many variations to the diagram or the operations
described therein without departing from the spirit of the
invention. For instance, the actions can be performed in a

40 differing order or actions can be added, deleted or modified.
Also, the term "coupled" and variations thereof describes
having a communications path between two elements and
does not imply a direct connection between the elements
with 110 intervening elements/connections between them. All

45 of these variations are considered a part of the specification.
In the accompanying figures and foliowing detailed

description of the disclosed embodiments, the various ele-
ments illustrated in the figures are provided with two or three
digit reference numbers. With minor exceptions, the leftmost

50 digit(s) ofeach reference number correspond to the figure in
which its element is first illustrated.

DETAILED DESCRIPTION

55 Various embodiments of the invention are described
herein with reference to the related drawings. Alternative
embodiments of the invention can be devised without
departing from the scope of this invention. Various connec-
tions and positional relationships (e.g., over, below, adja-

60 cent, etc.) are set forth between elements in the foliowing
description and in the drawings. These connections and!or
positional relationships, unless specified otherwise, can be
direct or indirect, and the present invention is not intended
to be limiting in this respect. Accordingly, a coupling of

65 entities can refer to either a direct or an indirect coupling,
and a positional relationship between entities can be a direct
or indirect positional relationship. Moreover, the various

US 10,657,230 B2
3

tasks and process steps described herein can be incorporated
into a more comprehensive procedure or process having
additional steps or functionality not described in detail
herein.

The foliowing definitions and abbreviations are to be used
for the interpretation of the claims and the specification. As
used herein, the terms "comprises," "comprising,"
"includes," "including," "has," "having," "contains" or
"containing," or any other variation thereof, are intended to
cover a non-exclusive inclusion. For example, a composi-
tion, a mixture, process, method, article, or apparatus that
comprises a list ofelements is not necessarily limited to only
those elements but can include other elements not expressly
listed or inherent to such composition, mixture, process,
method, article, or apparatus.

Additionally, the term "exemplary" is used herein to mean
"serving as an example, instance or illustration." Any
embodiment or design described herein as "exemplary" is
not necessarily to be construed as preferred or advantageous
over other embodiments or designs. The terms "at least one"
and "one or more" may be understood to include any integer
number greater than or equal to one, i.e. one, two, three,
four, etc. The terms "a plurality" may be understood to
include any integer number greater than or equal to two, i.e.
two, three, four, five, etc. The term "connection" may
include both an indirect "connection" and a direct "connec-
tion."

The terms "about," "substantially," "approximately," and
variations thereof, are intended to include the degree of error
associated with measurement of the particular quantity
based upon the equipment available at the time of fihing the
application. For example, "about" can include a range of
±8% or 5%, or 2% of a given value.

For the sake ofbrevity, conventional techniques related to
making and using aspects of the invention may or may not
be described in detail herein. In particular, various aspects of
computing systems and specific computer programs to
implement the various technical features described herein
are well known. Accordingly, in the interest ofbrevity, many
conventional implementation details are only mentioned
briefly herein or are omitted entirely without providing the
well-known system and!or process details.

It is to be understood that although this disclosure
includes a detailed description 011 cloud computing, imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments ofthe
present invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
eifort or interaction with a provider ofthe service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as foliows:
On-demand self-service: a cloud consumer can unilater-

ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service's provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

4
Resource pooling: the provider's computing resources are

pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is

5 a sense of location independence in that the consumer
generally has 110 control or knowledge over the exact
location of the provided resources but may be able to speciFy
location at a higher level of abstraction (e.g., country, state,
or datacenter).

10 Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

15 Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and

20 reported, providing transparency for both the provider and
consumer of the utilized service.

Infrastructure as a Service (IaaS): the capability provided
to the consumer is to provision processing, storage, net-
works, and other fundamental computing resources where

25 the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of

30 select networking components (e.g., host firewalls).
Deployment Models are as follows:
Private cloud: the cloud infrastructure is operated solely

for an organization. It may be managed by the organization
or a third party and may exist on-premises or off-premises.

35 Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concems (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist 011-

40 premises or off-premises.
Public cloud: the cloud infrastructure is made available to

the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
45 two or more clouds (private, community, or public) that

remain unique entities but are bound together by standard-
ized or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

50 A cloud computing environment is service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure that includes a network of interconnected
nodes.

55 Referring now to FIG. 1, illustrative cloud computing
environment 50 is depicted. As shown, cloud computing
environment 50 comprises one or more cloud computing
nodes 10 with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant

60 (PDA) or cellular telephone 54A, desktop computer 54B,
laptop computer 54C, and!or automobile computer system
54N may communicate. Nodes 10 may communicate with
one another. They may be grouped (not shown) physically or
virtually, in one or more networks, such as Private, Com-

65 munity, Public, or Hybrid clouds as described hereinabove,
or a combination thereof. This allows cloud computing
environment 50 to offer infrastructure, platforms and!or

US 10,657,230 B2
5

software as services for which a cloud consumer does not
need to maintain resources 011 a local computing device. It
is understood that the types of computing devices 54A-N
shown in FIG. 1 are intended to be illustrative only and that
computing nodes 10 and cloud computing environment 50
can communicate with any type ofcomputerized device over
any type of network and!or network addressable connection
(e.g., using a web browser).

Referring now to FIG. 2, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG.
1) is shown. It should be understood in advance that the
components, layers, and functions shown in FIG. 2 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the foliowing
layers and corresponding functions are provided:

Hardware and software layer 60 includes hardware and
software components. Examples of hardware components
include: mainframes 61; RISC (Reduced Instruction Set
Computer) architecture based servers 62; servers 63; blade
servers 64; storage devices 65; and networks and networking
components 66. In some embodiments, software compo-
nents include network application server software 67 and
database software 68.

Virtualization layer 70 provides an abstraction layer from
which the foliowing examples of virtual entities may be
provided: virtual servers 71; virtual storage 72; virtual
networks 73, including virtual private networks; virtual
applications and operating systems 74; and virtual clients
75.

In one example, management layer 80 may provide the
functions described below. Resource provisioning 81 pro-
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or invoicing for
consumption of these resources. In one example, these
resources may comprise application software licenses. Secu-
rity provides identity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provides pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA.

Workloads layer 90 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation 91;
software development and lifecycle management 92; virtual
classroom education delivery 93; data analytics processing
94; transaction processing 95; and file management 96.

Referring to FIG. 3, there is shown an embodiment of a
processing system 100 for implementing the teachings
herein. In this embodiment, the system 100 has one or more
central processing units (processors) l0la, lolb, l0lc, etc.
(collectively or generically referred to as processor(s) 101).
In one embodiment, each processor 101 may include a
reduced instruction set computer (RISC) microprocessor.
Processors 101 are coupled to system memory 114 and
various other components via a system bus 113. Read only
memory (ROM) 102 is coupled to the system bus 113 and
may include a basic input/output system (BIOS), which
controls certain basic functions of system 100.

6
FIG. 3 further depicts an input/output (I/O) adapter 107

and a network adapter 106 coupled to the system bus 113.
I/O adapter 107 may be a small computer system interface
(SCSI) adapter that communicates with a hard disk 103

5 and/or tape storage drive 105 or any other similar compo-
nent. I/O adapter 107, hard disk 103, and tape storage device
105 are collectively referred to herein as mass storage 104.
Operating system 120 for execution 011 the processing
system 100 may be stored in mass storage 104. A network

10 adapter 106 interconnects bus 113 with an outside network
116 enabling data processing system 100 to communicate
with other such systems. A screen (e.g., a display monitor)
115 is connected to system bus 113 by display adaptor 112,
which may include a graphics adapter to improve the

15 performance of graphics intensive applications and a video
controller. In one embodiment, adapters 107, 106, and 112
may be connected to one or more I/O busses that are
connected to system bus 113 via an intermediate bus bridge
(not shown). Suitable I/O buses for connecting peripheral

20 devices such as hard disk controllers, network adapters, and
graphics adapters typically include common protocols, such
as the Peripheral Component Interconnect (PCI). Additional
input/output devices are shown as connected to system bus
113 via user interface adapter 108 and display adapter 112.

25 A keyboard 109, mouse 110, and speaker 111 all intercon-
nected to bus 113 via user interface adapter 108, which may
include, for example, a Super I/O chip integrating multiple
device adapters into a single integrated circuit.

In exemplary embodiments, the processing system 100
30 includes a graphics processing unit 130. Graphics process-

ing unit 130 is a specialized electronic circuit designed to
manipulate and alter memory to accelerate the creation of
images in a frame buffer intended for output to a display. In
general, graphics processing unit 130 is very efficient at

35 manipulating computer graphics and image processing and
has a highly parallel structure that makes it more effective
than general-purpose CPUs for algorithms where processing
of large blocks of data is done in parallel.

Thus, as configured in FIG. 3, the system 100 includes
40 processing capability in the form ofprocessors 101, storage

capability including system memory 114 and mass storage

104, input means such as keyboard 109 and mouse 110, and
output capability including speaker 111 and display 115. In
one embodiment, a portion of system memory 114 and mass

45 storage 104 collectively store an operating system coordi-
nate the functions of the various components shown in FIG.
3.

An overview of technologies that are more specifically
relevant to aspects of the invention deal with IT asset

50 management which includes a set of business practices that
manage assets such as software and hardware owned and!or
operated by a business organization. Ofparticular interest in
IT asset management is the management of software
installed on hardware assets and the associated software

55 licenses that have been purchased by an organization. Any
hardware assets (devices) operating software without a
software license can result in legal consequences for a
business. Management ofthis software can be done through
the management of lists of software that identiFy what

60 particular devices are running the software for each license
and periodic audits ofthe software installed 011 devices by IT
managers. However, these audits do not continuously moni-
tor the network or devices to find output files that are
created, identifying the software process that generated the

65 output file, and comparing software processes 011 the devices
that created the output files to the software licenses owned
for the devices.

US 10,657,230 B2
7

Tuming now to an overview of the aspects of the inven-
tion, one or more embodiments of the invention address the
above-described shortcomings of the prior art by providing
methods, systems, and computer program products for file
management. Aspects of the invention include monitoring
output files for one or more devices connected to a file
management system, such as a server. Any output files that
are created are compared to software applications running
011 a device to associate the output file with a particular
software application. The output file is compared to a
knowledge database which includes file type characteristics
that are compared to the file characteristics ofthe output file
to determine the software process that generated the output
file.

FIG. 4 is a biock diagram depicting a system for file
management according to one or more embodiments. The
system 400 includes a controller 402, a file monitoring
module 404, a knowledge database 406, a software license
manager utility 410, and a set devices 412-1, 412-2.
412-N (where N=any whole number greater than 2).

In one or more embodiments of the invention, the con-
troller 402 and the file monitoring module 404 can be
implemented 011 the processing system 100 found in FIG. 3.
Additionally, the cloud computing system 50 can be in wired
or wireless electronic communication with one or all of the
elements of the system 400. Cloud 50 can supplement,
support or replace some or all of the functionality of the
elements of the system 400. Additionally, some or all of the
functionality of the elements of system 400 can be imple-
mented as a node 10 (shown in FIGS. 1 and 2) ofcloud 50.
Cloud computing node 10 is only one example of a suitable
cloud computing node and is not intended to suggest any
limitation as to the scope ofuse or functionality of embodi-
ments of the invention described herein.

In one or more embodiments, the controller 402 operates
to analyze output files generated by software programs (also
referred to as processes). A file monitoring module 404
monitors the set of devices 412-1, 412-2 . . . 412-N to
determine when a new process is started. In this sense, the
new process can be software already installed 011 the device
412 and opened or can be a process that has never been
opened 011 the device 412. The file monitoring module 404
can be an application installed 011 a server that monitors the
generation of output files 011 to the file system 011 the server.
The file monitoring module 412 can also be a daemon or
other background application or regular software application
installed locally 011 the set ofdevices 412-1, 412-2. . . 412-N
to monitor the generation of output files stored locally to the
device 412 or stored 011 a server. The set of devices 412-1,
412-2 . . . 412-N include computer desktops, laptops,
servers, and any other electronic device that can operate
software and generate and save output files from the soft-
ware. For example, the set ofdevices 412-1,412-2. . . 412-N
can be all desktop computer and laptops operated by a
business organization. These devices can generate and store
output files locally and/or store output files 011 a server
system connected to the device.

In one or more embodiments, when a new output file is
created, the file monitoring module 404 forwards the char-
acteristics of the output file to the controller 402. The
characteristics (also known as schema) include naming
pattem, extensions, size, folder in which created, length of
content, language of content, file format (e.g., XML, JSON,
etc.), header/footer in content, and certain strings in content
(e.g., name of process that generated the output file). The
characteristic of the output file are compared to data in the
knowledge database 406. The knowledge database 406

8
includes information about files and file characteristics. The
knowledge database 406 is regularly updated to include the
latest information about files and file types. The updated
information can be obtained from software companies and!

5 or other software knowledge databases. Updating the knowl-
edge database 406 with data can be an independent, self-
leaming process that includes monitoring behavior of a
software process and focuses 011 matching generated files to
certain processes. The knowledge database 406 also

10 includes information about locations ofpossible output files
which the file monitoring module 404 can regularly scan to
identify these output files and then match the output files to
a process.

In one or more embodiments, a software license manager
15 utility 410 includes a list of all software program licenses

owned by an organization for each device in the set of
devices 412-1, 412-2 . . . 412-N. When an output file is
generated and the software program associated with the
output file is identified, the controller 402 compares the

20 software program to the software licenses to ensure that a
device is operating the correct software license to comply
with any license agreement. In addition to a list of software
program licenses, the software license manager utility 410
includes other information about the software program

25 license such as, for example, if the license agreement
specifies that the software licenses are required per device,
per processor, per core, andlor per thread operating the
software. In a server environment, some software licenses
are determined based 011 the number of physical cores 011 a

30 server. A multi-core processor is a single computing com-
ponent with two or more independent actual processing units
(i.e., "cores"), which are units that read and execute program
instructions. With a multi-core processor, a software license
can require the purchase of additional licenses per physical

35 core.
In one or more embodiments of the invention, the system

400 analyzes the computing environment (e.g., devices
412-1, 412-2 . . . 412-N) that is operating a process and
compares the computing environment to the number of

40 licenses necessary to operate the software. For example, an
output file is created taking a certain amount of time to
generate the output file 011 a device. The system 400 com-
pares this performance to other devices that have different
hardware configurations but similar performance to operate

45 the process generating the output file. The system 400
optimizes the licenses needed to operate a process and
generate output files based 011 the hardware configurations
that dictate the number of licenses. As a further example, an
initial device may be a 2-core processor operating a software

50 application. Another device may be a single core processor.
Ifthe single core processor can achieve similar performance
operating the software application, the software is moved to
the other device with the single core to reduce the number
of licenses needed to operate the process and saving 011

55 costs. In this example, for a per core license, the licenses
necessary for this process would be reduced from 2 to 1 by
going from a 2-core processor to a single core processor.

In one or more embodiments, machine leaming can be
utilized to assist with updating the knowledge database 406.

60 Machine learning can be used to match generated files to
certain processes as well as tracking the processes to deter-
mine that a process might generate a certain type of output
file. Machine leaming techniques include Random Forests,
Decision Tree, Ada boost, SVM, k nearest neighbors, and

65 Nave Bayes.
In one or more embodiments, the file characteristics (i.e.,

schema) can be inputted into a vector for known file types.

US 10,657,230 B2

The file characteristics can be stored in the knowledge
database 406. This vector of file characteristics is utilized as
labeled training data for a machine leaming algorithm to
help identiFy file types created in a file system. The machine
leaming algorithm can classification and clustering tech-
niques to group file types based 011 the associated file
characteristics in the vector. Additionally, the machine leam-
ing algorithm can look at unlabeled training data to help
identify pattems for output files and associate the output files
with running processes 011 a device.

In one or more embodiments, the machine leaming algo-
rithm can analyze additional file characteristics such as file
locations that are associated with a specific process and
associate the output file type stored in the file locations with
a running process. Also, the timing of the creation of an
output file with the running of certain processes can be used
to associate the output file with the process. For example,
after a new process is started 011 a device, an output file is
stored in a file system. The output file can continue to grow
in size as this new process is running. After the output file
stops growing in size, the new process is closed. The output
file can be associated with the new process based 011 the
timing ofthe creation of the output file and the timing ofthe
operation of the new process. The knowledge database 406
is updated based 011 this association for further use when the
same type of output file is created in the file system.

FIG. 5 depicts a biock diagram of an illustrated example
for matching a generated output file to a process running 011
a device according to one or more embodiments of the
present invention. The example 500 includes blocks 502,
504, 506, and 508 which represent a device at different
timestamps. As shown in biock 502, a CPU has two pro-
cesses operating, process A and process B. The CPU is in
electronic communication with a file system which can be a
network attached storage device or a storage local to the
device. Biock 504 depicts the CPU at a different timestamp
with a new process, process C, running and an output file,
out.txt, appears in the file system. At another timestamp, as
shown in Biock 506, the output file is increasing in size from
the 0 kB (kilobytes) to 50 kB and process C is still running
011 the CPU. At yet another timestamp, as shown in Biock
508, process C i5 110 longer running and the output file 15 110
longer increasing in size. The system 400 monitoring the
processes and output files associates the output file, out.txt,
with process C. Process C is associated with the output file
type and the size ofthe output file so any the output files like
out.txt of roughly the size of 50 kB can be associated with
process C.

In one or more embodiments, the system 400 tracks the
creation and storing of output files. These output files, once
identified, are matched to the associated process and device
running the process. The software license manager utility
410 compares the software licenses for a device with the
processes running 011 the device to ensure compliance.
Historical usage data is tracked for the software license for
each to device to determine if a device is in need of certain
software licenses. For example, if a threshold usage of a
process is not exceeded, a software license may be unas-
signed from the device and the device user may be notified
they 110 longer have rights to use the process. Another
threshold can be set that monitors if a process is utilized in
excess of the threshold. For example, if a single-core server
software is accessed above a threshold, this can signal to an
administrator that the process may need an additional core
added with an additional software license. Or the adminis-
trator can make another server available with a software
license for users ofthe process based 011 the utilization. The

10
software license manager utility 410 also compares license
pricing to determine the best license for a process based 011

utilization and other characteristics of the process usage
such as the output file types being created. For example, if

5 a full spreadsheet software is being utilized to create only
comma delineated files, the software license manager utility
410 could recommend a cheaper license level or even a
different software license that can create the same output file
type.

10 FIG. 6 depicts a flow diagram of a method 600 for file
management according to one or more embodiments of the
present invention. The method 600, at biock 602, includes
monitoring, by a processor, a device to determine an execu-

15
tion of a new process 011 the device. The method 600, at
biock 604, includes based at least in part 011 the new process
starting, monitoring a file system for a creation of a new file,
wherein the new file includes one or more file characteris-
tics. At biock 606, the method 600 includes comparing the

20 one or more file characteristics to a knowledge database to
determine a file type for the new file. The method 600
includes associating the new file to the new process based at
least in part 011 determining the file type for the new file, as
shown at biock 608.

25 Additional processes may also be included. It should be
understood that the processes depicted in FIG. 6 represent
illustrations and that other processes may be added or
existing processes may be removed, modified, or rearranged
without departing from the scope and spirit of the present

30 disclosure.
FIG. 7 depicts a flow diagram of an exemplary method for

file management according to one or more embodiments of
the present invention. The method 700 includes monitoring
new processes and the generation of output files for a device,
as shown at biock 702. The monitoring can be done by the
file monitoring module 404 either running 011 the device or
running 011 a server. An example program for file monitoring
is a daemon or some other small process that monitors all

40 processes and changes in a file system. The method 700, at
biock 704, is a decision biock to see if a new process has
started. If 110 new process has started, the method 700
continues to monitor for new processes and the generation of
output files. Ifa new process has started, the method 700, at

45 biock 706, determines if a new output file appears in the file
system. If not new output file, the system continues to
monitor. If a new output file appears, the method, at biock
708, attempts to determine a file type for the output file. If
the file type is unknown, the method 700 identifies the new

50 file and the associated process. This can be achieved through
the system 400 verifying and matching a process to an
output file based 011 the file monitoring and the creation of
a new file while a process is running. It can be further
confirmed through verif ing the process has finished and the

55 output file i5 110 longer increasing in size. If the file type is
known, the method 700 reports the output file types gener-
ated 011 the device, as shown at biock 712. The report can be
in any form and sent to an IT professional within a business
organization. Once the operating system (OS) shuts down

60 for the device, as shown at biock 714, the method 700
compares the output file types generated 011 the device to the
software licenses assigned to the device, as shown at biock
716. Ifthe OS has not shut down, the method 700 continues
to monitor new processes and output files.

65 Additional processes may also be included. It should be
understood that the processes depicted in FIG. 7 represent
illustrations, and that other processes may be added or

US 10,657,230 B2
11

existing processes may be removed, modified, or rearranged
without departing from the scope and spirit of the present
disclosure.

In one or more embodiments of the invention, if a
software process running 011 a device is determined to be in
violation of a software license or if a software license does
not exist for a software process, the system 400 can take a
remedial action. Remedial actions include but are not lim-
ited to shutting down access to the device, sending a
notification to the user of the device, sending a notification
to an IT professional, and/or shutting down the software
process. The system 400 can also be utilized to monitor
utilization of software licenses based at least in part 011 the
number of output files produced. If a large number of
licenses exist but there is low utilization, the system 400 can
report this lack of utilization and IT personnel can remove
these non-utilized programs from devices. For example, if
utilization of a fully licensed program that creates a certain
type ofextensions is low, an IT professional can be notified.
The IT professional may realize that the full license is not
necessary based 011 the number of output files created and
may switch to a partial license. An example ofthis would be
a view only program versus a program that can generate
files. An organization may only need to view certain files and
not necessarily need to create those files. A full license
would not be necessary to provide a solution.

The present invention may be a system, a method, and!or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples ofthe computer readable storage medium includes
the foliowing: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and!or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and!or edge servers. A network adapter card or
network interface in each computinglprocessing device

12
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

5 Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting-data, or

10 either source code or object code written in any combination
ofone or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-

15
guages, such as the "C" programming language or similar
programming languages. The computer readable program
instructions may execute entirely 011 the user' 5 computer,

partly 011 the user's computer, as a stand-alone software
package, partly 011 the user' s computer and partly 011 a

20 remote computer or entirely 011 the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user's computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an

25 external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer

30 readable program instructions by utilizing state information
ofthe computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects ofthe present invention are described herein with
35 reference to flowchart illustrations andlor block diagrams of

methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the

40 flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-

45 cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and!or block diagram block or blocks. These

50 computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and!
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions

55 stored therein comprises an article ofmanufacture including
instructions which implement aspects of the functionlact
specified in the flowchart and!or block diagram block or
blocks.

The computer readable program instructions may also be
60 loaded onto a computer, other programmable data process-

ing apparatus, or other device to cause a series ofoperational
steps to be performed 011 the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute 011

65 the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart andlor block diagram block or blocks.

US 10,657,230 B2
13

The flowchart and biock diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each biock in the flowchart
or biock diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some altemative implementations, the
functions noted in the biock may occur out ofthe order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each biock of the biock diagrams andlor flowchart
illustration, and combinations of blocks in the biock dia-
grams and!or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

What is claimed is:
1. A computer-implemented method for file management,

the method comprising:
monitoring, by a processor, a device to determine an

execution of a new process 011 the device;
based at least in part 011 the new process starting, moni-

toring a file system for a creation of a new file, wherein
the new file includes one or more file characteristics;

comparing the one or more file characteristics to a knowl-
edge database to determine a file type for the new file;

associating the new file to the new process based at least
in part 011 determining the file type for the new file;

monitoring a first set of processing characteristics
required to create the new file 011 the device;

14
determining a first hardware confguration for the device,

where the device is a first device;
identif ing a second device, the second device including

a second hardware configuration;
analyzing the first hardware confguration and the second

hardware configuration to determine that the second
hardware configuration requires fewer software
licenses to run the new process with similar processing
characteristics to the first set of processing character-
istics;

10
moving the new process to the second device; and
removing the new process from the first device.
2. The method of claim 1 further comprising:
based at least 011 a determination that the one or more file

characteristics are not in the knowledge database, asso-
15 ciating the new file with the new process; and

updating the knowledge database to include the associated
new file with the new process.

3. The method of claim 1 further comprising:
receiving, by the processor, a set of software licenses

20 associated with the device; and
comparing the new process to the set of software licenses

to determine that the device running the new process
complies with the set of software licenses.

4. The method of claim 3 further comprising:
25 comparing the new process to the set of software licenses

to determine that the device running the new process
violates at least one software license in the set of
software licenses.

5. The method of claim 4 further comprising:
30 based at least in part 011 the determination that the device

running the new process violates at least one software
license in the set of software licenses, initiating a
remedial action.

* * * * *

	Bibliography
	Drawings
	Description
	Claims

