
III III III DID III IDI II IDI II loll DDl ll Dl ll
US010585853B2

(12) United States Patent
Hanusiak et al.

(54) SELECTING IDENTIFIER FILE USING
MACHINE LEARNING

(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(72) Inventors: Tomasz Hanusiak, Czarny Dunajec
(PL); Konrad W. Komnata, Krakow
(PL); Jaroslaw Osinski, Mrozy (PL);
Grzegorz Szczepanik, Krakow (PL)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 276 days.

(21) Appl. No.: 15/597,504

(22) Filed: May 17, 2017

(65) Prior Publication Data

US 2018/0336323 Al Nov. 22, 2018

(51) Int. Cl.
G06F 16/14 (2019.01)
G06N 20/00 (2019.01)
G06F 16/13 (2019.01)
G06F 21/73 (2013.01)
G06F 21/12 (2013.01)
G06N 3/04 (2006.01)
GO6F 8/61 (2018.01)

(52) U.S. Cl.
CPCGO6F 16/148 (2019.01); GO6F 16/13

(2019.01); G06F21/121 (2013.01); GO6F
21/73 (2013.01); G06N3/0427 (2013.01);

G06N3/0481 (2013.01); G06N20/00
(2019.01); GO6F 8/61 (2013.01)

1oo

(10) Patent No.: US 10,585,853 B2
(45) Date of Patent: Mar. 10, 2020

(58) Field of Classification Search
CPCGO6F 16/148; GO6F 16/13; GO6F 12/121;

GO6F 27/73; GO6F 8/61; GO6N 20/00;
GO6N 3/04

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,487,544 B2 2/2009 Schultz et al.
7,519,998 B2 4/2009 Cai et al.
9,047,161 Bi * 6/2015 BurrG06F 21/105
9,304,980 Bi * 4/2016 HartsookG06F 21/577

2004/0236884 Al 11/2004 Beetz
2007/0276823 Al * 11/2007 BordenH04L 9/3239

(Continued)

OTHER PUBLICATIONS

Ryan M. Harris, "Using Artificial Neural Networks for Forensic File
Type Identification", CERIAS Tech Report 2007-19, Center for
Education and Research in Information Assurance and Security,
Purdue University, May 2007, pp. 1-66.

Primary Examiner Paul E Callahan
(74) Attorney, Agent, or Firm Cantor Colburn LLP;
Jeffrey S LaBaw

(57) ABSTRACT

Embodiments of the present invention are directed to a
computer-implemented method for selecting an identifier
file for a software product. An example method includes
installing the software product on a machine. The method
further includes determining a list of files of the software
product by scanning a file system of the machine. The
method further includes selecting an identifier file from the
list of files using a machine learning algorithm. The method
further includes updating a license of the software product
on the machine with the identifier file.

Identifier File Finder
110

16 Claims, 9 Drawing Sheets

Computer System Identifier Database Computer System Identifier Database

124 i4

SW-i D-FIe A SW-i D-Fe A

SW-2 D-Ffle B SW-2 D-Fe B

126 136

US 10,585,853 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2013/0246352 Al 9/2013 Spurlock et al.
2015/0363691 Al 12/2015 Gocek et al.
2017/0220605 Al * 8/2017 NivalaGO6F 16/27

* cited by examiner

U.S. Patent Mar. 10, 2020 Sheet 1 of 9 US 10,585,853 B2

th
U-

U.S. Patent Mar. 10, 2020 Sheet 2 of 9 US 10,585,853 B2

th
U-

U.S. Patent Mar. 10, 2020 Sheet 3 of 9 US 10,585,853 B2

N
(0
c4

c)
th

LL

U.S. Patent

N

Mar. 10, 2020 Sheet 4 of 9 US 10,585,853 B2

o

(N
(N

_)

=

o

o

(N
-

E =
ci,2

-

o

o

Lt)

c_ (N

ci)
0 =

2
- =

=0
— Q

(N
(N

0 (1)

ci)

L
0
Cl)

-= oci)
C_)

C/)
a. 0
8 -

Cl)

(N

*7

(0
(N

-

0

z

U.S. Patent Mar. 10, 2020 Sheet 5 of 9 US 10,585,853 B2

C)

L()
C-'.'
L()

-

=
4

D

2
- j

- C'.'
I.C)

U.S. Patent Mar. 10, 2020 Sheet 6 of 9 US 10,585,853 B2

U)

c ci)
'- — C'--
a) = a)

U)
Co

= C_) -

a) a) Co 0
:2_= z

C-)

0 —

0 z

0
0

I
0
0
0
a)

-I
Co

=
Co
C-)

-a
=
0 -a
=

0

(0

a)
4- ,

;
>0

.=

a) -aU
>- 0

U.S. Patent

CN

0
>
(0
—J

N

Mar. 10, 2020 Sheet 7 of 9 US 10,585,853 B2

LC)

U.S. Patent Mar. 10, 2020 Sheet 8 of 9 US 10,585,853 B2

C.-.

Lol
Cl)

c1 c'ji ci c')
— col c: 031 col >-.

- CO cot

a) 0)
=

—

- —
U)
= ><

C c U)
a)

a) --

U)
-I
C.)

j3
a)

-

0 2
—
U)

= o a) a)
o 2 c - -

a) ___

p.

=

C-) ><
a) U)

.2 -

E E
>a)a)

0
-

U) C)
-

..-.

>

L 0)

a) E

c a) L Cl)
a) 0

- — a) ' o a) a)
-= U)

-
-= '-

-

C.) -

OU)a)
CI)

U)

C/)U) C/)E

=

a '

Co

th
U-

U.S. Patent Mar. 10, 2020 Sheet 9 of 9 US 10,585,853 B2

LOt CDt CDI CDI
D c I rt LOi

0)1 0) - o1 0)1 0)1
><

-

U)
ct

-

-

0

()
—
()

E >< 0

- = a)
= U) -

0 CT) a)

0 Ct)

o -

U)

a) U- 0
U)

ta) — CT)
____ ____ ____

i-a)
0U)

E 4-

EU)- a) U)

a) t U) - '- 2 a)
-

= CT)
> -

- 0
>

a) a) a)
L =

-

"2a) U) -

a)
(I) CD = a) a) ()

a) - Ct a) = -
=
a) = .-a)

CT) Ct a) _

- CT)-
CT)U) =

Cl) U) C) 0 Cl)><
a)
0

a) 5
C/) =

US 10,585,853 B2
1

SELECTING IDENTIFIER FILE USING
MACHINE LEARNING

BACKGROUND

The present invention relates to computer technology, and
more specifically, to software licensing and audit by iden-
tif ing a unique identifier for a software product.

During verification and/or validation of a license of a
software product that is installed on a computer system, the
software needs to have a unique identifier, which identifies
exactly what this software is. In one or more examples, a file
used by the software is used as the unique identifier. How-
ever, it is technically challenging to identiFy an identifier for
a software product, because many files used by various
software products are similar.

SUMMARY

Embodiments of the present invention are directed to a
computer-implemented method for selecting an identifier
file for a software product. An example method includes
installing the software product on a machine. The method
further includes determining a list of files of the software
product by scanning a file system of the machine. The
method further includes selecting an identifier file from the
list of files using a machine learning algorithm. The method
further includes updating a license of the software product
on the machine with the identifier file.

Embodiments of the present invention are directed to a
computer program product for selecting an identifier file for
a software product installed on a machine, the computer
program product including a computer readable storage
medium having program instructions embodied therewith,
the program instructions executable by a processing circuit
to cause the processing circuit to determine a list of files of
the software product by scanning a file system of the
machine. The instructions further cause the processing cir-
cuit to select the identifier file from the list of files using a
machine learning algorithm. The instructions further cause
the processing circuit to update a license of the software
product on the machine with the identifier file.

Embodiments of the present invention are directed to a
system for selecting an identifier file for a software product
installed on a machine. An example system includes a
memory, and a processor coupled to the memory. In one or
more examples, the processor determines a list of files of the
software product by scanning a file system of the machine.
The processor selects the identifier file from the list of files
using a machine learning algorithm. The processor updates
a license of the software product on the machine with the
identifier file.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a cloud computing environment according
to one or more embodiments of the present invention;

FIG. 2 depicts a set of functional abstraction layers
provided by cloud computing environment according to one
or more embodiments of the present invention;

FIG. 3 depicts an example system for determining an
identifier file for a software product, according to one or
more embodiments of the present invention;

FIG. 4 depicts an example computer system, according to
one or more embodiments of the present invention;

2
FIG. 5 depicts an example neuron of an ANN that is used

for determining an identifier file for a software product,
according to one or more embodiments of the present
invention;

5 FIG. 6 depicts a flowchart for an activation function of a
neuron for selecting an identifier file from an input list of
files, according to one or more embodiments of the present
invention;

FIG. 7 depicts an example neural network used for
10 selecting an identifier file from an input list of files, accord-

ing to one or more embodiments of the present invention;
FIG. 8 depicts a flowchart for training a neural network,

according to one or more embodiments of the present

15
invention; and

FIG. 9 depicts a flowchart for finding an identifier file for
a software product installed on a computer system, accord-
ing to one or more embodiments of the present invention.

20 DETAILED DESCRIPTION

Various embodiments of the invention are described
herein with reference to the related drawings. Alternative
embodiments of the invention can be devised without

25 departing from the scope of this invention. Various connec-
tions and positional relationships (e.g., over, below, adja-
cent, etc.) are set forth between elements in the following
description and in the drawings. These connections and/or
positional relationships, unless specified otherwise, can be

30 direct or indirect, and the present invention is not intended
to be limiting in this respect. Accordingly, a coupling of
entities can refer to either a direct or an indirect coupling,
and a positional relationship between entities can be a direct
or indirect positional relationship. Moreover, the various

35 tasks and process steps described herein can be incorporated
into a more comprehensive procedure or process having
additional steps or functionality not described in detail
herein.

The following definitions and abbreviations are to be used
40 for the interpretation of the claims and the specification. As

used herein, the terms "comprises," "comprising,"
"includes," "including," "has," "having," "contains" or
"containing," or any other variation thereof, are intended to
cover a non-exclusive inclusion. For example, a composi-

45 tion, a mixture, process, method, article, or apparatus that
comprises a list of elements is not necessarily limited to only
those elements but can include other elements not expressly
listed or inherent to such composition, mixture, process,
method, article, or apparatus.

50 Additionally, the term "exemplary" is used herein to mean
"serving as an example, instance or illustration." Any
embodiment or design described herein as "exemplary" is
not necessarily to be construed as preferred or advantageous
over other embodiments or designs. The terms "at least one"

55 and "one or more" may be understood to include any integer
number greater than or equal to one, i.e. one, two, three,
four, etc. The terms "a plurality" may be understood to
include any integer number greater than or equal to two, i.e.
two, three, four, five, etc. The term "connection" may

60 include both an indirect "connection" and a direct "connec-
tion."

The terms "about," "substantially," "approximately," and
variations thereof, are intended to include the degree of error
associated with measurement of the particular quantity

65 based upon the equipment available at the time of filing the
application. For example, "about" can include a range of
±8% or 5%, or 2% of a given value.

US 10,585,853 B2
3

For the sake of brevity, conventional techniques related to
making and using aspects of the invention may or may not
be described in detail herein. In particular, various aspects of
computing systems and specific computer programs to
implement the various technical features described herein
are well known. Accordingly, in the interest of brevity, many
conventional implementation details are only mentioned
briefly herein or are omitted entirely without providing the
well-known system and/or process details.

In computer systems, typically, a software product
installed on a computer system has a unique identifier, which
defines exactly what this software product is. In one or more
examples, the computer system associates a file as a unique
identifier of the software product. It is technically challeng-
ing to identify a unique identifier file for the software
product because many files used by various software prod-
ucts installed on the computer system are similar. Further,
the various software products may use common files. Tech-
nical solutions described herein address the above technical
challenge, by identifying a unique identifier file for a soft-
ware product using machine-learning techniques, such as
neural networks. For example, the technical solutions use
self-adjusting neural networks to find the unique identifier
files used for software licensing process. Thus, the technical
solutions facilitate finding identifier files for software prod-
ucts in an automatic manner, based on files already existing
on the computer system.

It is understood in advance that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:
On-demand self-service: a cloud consumer can unilater-

ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service's provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider's computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user

5 accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:
Software as a Service (SaaS): the capability provided to

10 the consumer is to use the provider's applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure

15 including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
20 the consumer is to deploy onto the cloud infrastructure

consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating

25 systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations

Infrastructure as a Service (IaaS): the capability provided
to the consumer is to provision processing, storage, net-

30 works, and other fundamental computing resources where
the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, stor-

35 age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:
Private cloud: the cloud infrastructure is operated solely

for an organization. It may be managed by the organization
40 or a third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed

45 by the organizations or a third party and may exist on-
premises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

50 Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
ized or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing

55 between clouds).
A cloud computing environment is service oriented with

a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected

60 nodes.
Referring now to FIG. 1, illustrative cloud computing

environment 50 is depicted. As shown, cloud computing
environment 50 comprises one or more cloud computing
nodes 10 with which local computing devices used by cloud

65 consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone 54A, desktop computer 54B,
laptop computer 54C, and/or automobile computer system

US 10,585,853 B2
5

54N may communicate. Nodes 10 may communicate with
one another. They may be grouped (not shown) physically or
virtually, in one or more networks, such as Private, Com-
munity, Public, or Hybrid clouds as described hereinabove,
or a combination thereof This allows cloud computing
environment 50 to offer infrastructure, platforms and/or
software as services for which a cloud consumer does not
need to maintain resources on a local computing device. It
is understood that the types of computing devices 54A-N
shown in FIG. 1 are intended to be illustrative only and that
computing nodes 10 and cloud computing environment 50
can communicate with any type of computerized device over
any type of network and/or network addressable connection
(e.g., using a web browser).

Referring now to FIG. 2, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG.
1) is shown. It should be understood in advance that the
components, layers, and functions shown in FIG. 2 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided:

Hardware and software layer 60 includes hardware and
software components. Examples of hardware components
include: mainframes 61; RISC (Reduced Instruction Set
Computer) architecture based servers 62; servers 63; blade
servers 64; storage devices 65; and networks and networking
components 66. In some embodiments, software compo-
nents include network application server software 67 and
database software 68.

Virtualization layer 70 provides an abstraction layer from
which the following examples of virtual entities may be
provided: virtual servers 71; virtual storage 72; virtual
networks 73, including virtual private networks; virtual
applications and operating systems 74; and virtual clients
75.

In one example, management layer 80 may provide the
functions described below. Resource provisioning 81 pro-
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or invoicing for
consumption of these resources. In one example, these
resources may comprise application software licenses. Secu-
rity provides identity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA.

Workloads layer 90 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation 91;
software development and lifecycle management 92; virtual
classroom education delivery 93; data analytics processing
94; transaction processing 95; and software product identi-
fier determination 96.

FIG. 3 depicts an example system 100 for determining an
identifier file for a software product, according to one or
more embodiments of the present invention. In the depicted
example, an identifier file finder 110 is in communication
with multiple computer systems, and databases, such as a

computer system 122, a computer system 132, an identifier
database 124, and an identifier database 134. It should be
noted that although FIG. 3 depicts only two computer
systems and two databases, in other examples, the identifier

5 file finder 110 communicates with a different number of
computer systems and/or databases.

The computer system 122 (and 132) is a typical computer,
such as a desktop computer, a server computer, a laptop
computer, a mobile computer, a tablet computer, a phone, or

10 any other computing device on which a software product can
be installed and executed. The identifier database 124 (and
134) is a database that includes information about unique file
identifiers of the software products that are installed on the
computer system 122. It should be noted that although FIG.

15 3 depicts the identifier database 124 separate from the
computer system 122, in one or more examples, the identi-
fier database 124 is a part of the computer system 122 itself.
Further, in one or more examples, the identifier database 124
is common to all of the multiple computer systems for which

20 the identifier file finder 110 identifies the unique identifier
files.

Further, FIG. 3 depicts installed software products 126
associated with the computer system 122 and installed
software products 136 associated with the computer system

25 132. The installed software products are software products
that are installed on the corresponding computer system. For
example, the installed software products 126 include
MICROSOFTTM, WORDTM, POWERPOINTTM, EXCELTM,
ADOBETM ACROBATTM, PHOTOSHOPTM, MEDIA

30 PLAYERTM, SAFARITM, IBMTM DB2TM, LOTUS
NOTESTM, or any other software product that is installed on
the computer system 122. Each of the installed software
products 126 includes corresponding files used for executing
the specific software product. For example, the files include

35 computer executable instructions (e.g. java files, C files
etc.), media files (e.g. images, videos, audio etc.), supporting
libraries (e.g. dynamic link libraries (DLLs), COM object
files etc.), or any other such electronic files that the software
product uses for being executed by the processor 205. One

40 or more of the files used by the software product is selected
as a unique identifier of the software product, as depicted by
the list of software products 126. As depicted, each installed
software product 126 has a corresponding unique identifier
file. The existence of the unique identifier file indicates the

45 presence, and sometimes valid license of the corresponding
software product.

For example, in computer system 122 the software prod-
uct 1 has a corresponding identifier file File-A. File-A is part
of the software product 1 and was installed with that

50 software product. The computer system 122 can determine
if the software product 1 exists, that is, installed on the
computer system 122, by determining the existence of the
File-A on the computer system 122. In one or more
examples, the identifier database 124 includes a pairing

55 between the software product 1 and the File-A so that a
software product 2 installed on the computer system 122
uses a different file, File-B as its unique identifier. The
computer system 132 and the identifier database 134 also
have a similar pairing of the installed software products 136

60 and corresponding identifier files.
In one or more examples, if an identifier database is

shared among the different computer systems, the software
products installed on the different computer systems each
have a unique identifier file across the different computer

65 systems. Thus, in such a case, the software product 1 has
File-A as the identifier file on each computer system the
software product 1 is installed on.

US 10,585,853 B2
7

In one or more examples, if the identifier database is
unique to each computer system, each computer system can
have a different identifier file for a software product. For
example, the computer system 122 can have File-A as the
identifier file for the software product 1 and the computer
system 132 can have File-B as the identifier file for the
software product 1.

The identifier file finder 110 determines the unique iden-
tifier files for a software product that is installed on the
computer system, such as the computer system 122. In one
or more examples, the identifier file finder 110 is a separate
machine, such as a separate computer system from the
computer system 122. Alternatively, in one or more
examples, the identifier file finder 110 is a computer program
product that executes on the computer system 122 itself. In
either case, the identifier file finder 110 is a computer
system, such as a desktop computer, a laptop computer, a
server computer, a tablet computer, a phone, or any other
computing device, or a computer product executable on such
a computing device.

FIG. 4 depicts an example computer system 200, accord-
ing to one or more embodiments of the present invention.
The computer system 200 can be used as the computer
system 122, the computer system 132, and/or the identifier
file finder 110, in one or more examples. The computer
system 200 includes hardware, such as electronic circuitry,
that can execute software products, such as program instruc-
tions.

The computer system 200 includes, among other compo-
nents, a processor 205, a memory 210 coupled to a memory
controller 215, and one or more input devices 245 and/or
output devices 240, such as peripheral or control devices,
that are communicatively coupled via a local I/O controller
235. These devices 240 and 245 may include, for example,
battery sensors, position sensors (altimeter 40, accelerom-
eter 42, GPS 44), indicator/identification lights and the like.
Input devices such as a conventional keyboard 250 and
mouse 255 may be coupled to the I/O controller 235. The I/O
controller 235 may be, for example, one or more buses or
other wired or wireless connections, as are known in the art.
The I/O controller 235 may have additional elements, which
are omitted for simplicity, such as controllers, buffers
(caches), drivers, repeaters, and receivers, to enable com-
munications.

The I/O devices 240, 245 may further include devices that
communicate both inputs and outputs, for instance disk and
tape storage, a network interface card (NIC) or modulator/
demodulator (for accessing other files, devices, systems, or
a network), a radio frequency (RF) or other transceiver, a
telephonic interface, a bridge, a router, and the like.

The processor 205 is a hardware device for executing
hardware instructions or software, particularly those stored
in memory 210. The processor 205 may be a custom made
or commercially available processor, a central processing
unit (CPU), an auxiliary processor among several processors
associated with the system 100, a semiconductor based
microprocessor (in the form of a microchip or chip set), a
macroprocessor, or another device for executing instruc-
tions. The processor 205 includes a cache 270, which may
include, but is not limited to, an instruction cache to speed
up executable instruction fetch, a data cache to speed up data
fetch and store, and a translation lookaside buffer (TLB)
used to speed up virtual-to-physical address translation for
both executable instructions and data. The cache 270 may be
organized as a hierarchy of more cache levels (Li, L2, and
so on.).

8
The memory 210 may include one or combinations of

volatile memory elements (for example, random access
memory, RAM, such as DRAM, SRAM, SDRAM) and
nonvolatile memory elements (for example, ROM, erasable

5 programmable read only memory (EPROM), electronically
erasable programmable read only memory (EEPROM), pro-
grammable read-only memory (PROM), tape, compact disc
read only memory (CD-ROM), disk, diskette, cartridge,
cassette or the like). Moreover, the memory 210 may incor-

10 porate electronic, magnetic, optical, or other types of storage
media. Note that the memory 210 may have a distributed
architecture, where various components are situated remote
from one another but may be accessed by the processor 205.

The instructions in memory 210 may include one or more
15 separate programs, each of which comprises an ordered

listing of executable instructions for implementing logical
functions. In the example of FIG. 2, the instructions in the
memory 210 include a suitable operating system (OS) 211.
The operating system 211 essentially may control the execu-

20 tion of other computer programs and provides scheduling,
input-output control, file and data management, memory
management, and communication control and related ser-
vices.

Additional data, including, for example, instructions for
25 the processor 205 or other retrievable information, may be

stored in storage 220, which may be a storage device such
as a hard disk drive or solid state drive. The stored instruc-
tions in memory 210 or in storage 220 may include those
enabling the processor to execute one or more aspects of the

30 systems and methods described herein.
The computer system 200 may further include a display

controller 225 coupled to a user interface or display 230. In
some embodiments, the display 230 may be an LCD screen.
In other embodiments, the display 230 may include a

35 plurality of LED status lights. In some embodiments, the
computer system 200 may further include a network inter-
face 260 for coupling to a network 265. The network 265
may be an IP-based network for communication between the
computer system 200 and an external server, client and the

40 like via a broadband connection. In an embodiment, the
network 265 may be a satellite network. The network 265
transmits and receives data between the computer system
200 and external systems. In some embodiments, the net-
work 265 may be a managed IP network administered by a

45 service provider. The network 265 may be implemented in
a wireless fashion, for example, using wireless protocols and
technologies, such as WiFi, WiMax, satellite, or any other.
The network 265 may also be a packet-switched network
such as a local area network, wide area network, metropoli-

50 tan area network, the Internet, or other similar type of
network environment. The network 265 may be a fixed
wireless network, a wireless local area network (LAN), a
wireless wide area network (WAN) a personal area network
(PAN), a virtual private network (VPN), intranet or other

55 suitable network system and may include equipment for
receiving and transmitting signals.

In one or more examples, the identifier file finder 110 uses
machine learning techniques to determine the identifier file
for a software product installed on the computer system 122.

60 For example, the identifier file finder 110 uses artificial
neural networks (ANN) to determine the identifier file.

ANNs are a family of models inspired by biological
neural networks (the central nervous systems of animals, in
particular, the brain), which are used to estimate or approxi-

65 mate functions that depend on a large number of inputs and
are generally unknown. In one or more examples, the
identifier file finder 110 uses a learning with tutor paradigm

US 10,585,853 B2
10

during a training phase so as to automatically determine the
identifier files once trained. In one or more examples, an
entry value to the neural network used for determining the
identifier file is a vector with all files of a specific software
product. Every neuron in the ANN finds a unique file, (for
example, based on name and size of a file), comparing the
file's attributes to a dynamically created knowledge base.
The knowledge base can be an identifier database, which
serves as a reference list of identifier files, to which files are
compared during the audit process. For example, during a
software licensing audit of the computer system 122, the
computer system 122 is scanned to determine the installed
software products 126 on the computer system 122. Further,
it is determined if the computer system 122 is authorized to
execute the installed software products 126 by checking
licenses for the installed software products 126 on the
computer system 122 are valid (unexpired).

The ANN neuron calculation outputs attributes (for
example, name) of a unique file, which can serve as software
product identifier file. In one or more examples, first few
iterations of the ANN are performed with a tutor who
informs the ANN if the output value is correct for known
cases of software products with predetermined identifier
files. Next iterations (next software products) are handled
with auto learning paradigm, where the ANN can determine
which file is an optimal candidate to serve as the identifier
file for the software product.

FIG. S depicts an example neuron 510 of the ANN that is
used for determining an identifier file for a software product,
according to one or more embodiments of the present
invention. The neuron 510 receives, as input, a vector or list
of files 520 in the software product 525. The output 530 of
the neuron 510 is a name or identifier of a file from the list
of files 520 that the neuron indicates to be used as the
identifier file for the software product 525. The neuron 510
uses an activation function, which analyzes the list of files
520 and selects the output 530.

FIG. 6 depicts a flowchart for an activation function of the
neuron 510 for selecting an identifier file from the input list
of files 520, according to one or more embodiments of the
present invention. The neuron 510 receives, as input, the list
of files 520, as shown at 605. The neuron 510 sets a marker,
i, for indicating which file from the list of files 520 is being
analyzed, as shown at 605. Further, the neuron 510 sets a
marker, j, for indicating which file from an identifier data-
base 124 is being compared, as shown at 605. It should be
noted that although in the depicted example, the neuron 510
starts from i=O, and j=O, the different marker values are used
in other examples. The neuron 510 further initializes an
empty candidate pool of files that can be used as an identifier
file for the software product, as shown at 605.

Further, the neuron 510 compares file-i from the list of
files 520 with an id-file-j from an identifier file database 124
and determines a similarity score between file-i and id-file-j,
as shown at 610. In one or more examples, the similarity
score is determined based on the names of the files, for
example, a number of characters matching between the two
file names. Alternatively, or in addition, the similarity score
is a ratio between the number of matching characters and
non-matching characters. Further, in other examples, alter-
natively, or in addition, other attributes of the files are used
for computing the similarity score. For example, sizes of the
files, date of creation, date of modification, location of the
file (path), are used for computing the similarity score,
among other attributes/properties of the file. The similarity
score thus indicates a similarity between the file from the list
of files 520 and a file from the identifier file database 124.

The neuron 510 further checks if the similarity score
between the file from the list of files 520 and an identifier file
from the identifier file database 124 exceeds a predetermined
threshold, for example, 60%, 70%, or any other threshold, as

5 shown at 620. Although the examples above indicate the
similarity score in percentages, it should be noted that in
other examples, the scores may be a numeric value and not
a percentage.

If the similarity score is above (or equal to) the threshold,
10 that is if the file from the list of files 520 is similar to the file

compared from the identifier database 124, the file is not
used as an identifier, and a next file is checked in the above
manner, if available, as shown at 620, 640, and 642. Thus,
the neuron 510 checks if the list of files 520 has additional

15 files for analyzing, and if so compares that file with the
identifier database 124, as shown at 640 and 642. If there are
not additional files left to check in the list of files 520, the
neuron 510 outputs the candidate pool, as shown at 645.

If the similarity score is below the predetermined thresh-
20 old, the neuron 510 continues to compare the file with

additional files from the identifier file database 124, as
shown at 630 and 632. For example, the neuron 510 checks
if additional files exist in the identifier file database 124 that
are yet to be compared with the file-i, as shown at 630. If

25 there are additional files, the neuron 510 updates the marker
accordingly, for example by incrementing it, and uses the

next file-j for the comparison, as shown at 632. If there are
no additional files left in the identifier file database 124 that
are yet to be compared with the file-i, it indicates that the

30 similarity scores of file-i with respect to each file in the
identifier file database 124 is below the predetermined
threshold. Accordingly, the neuron 510 adds file-i to the
candidate pool, as shown at 635. The neuron 510 further
checks if additional files from the list of files 520 are to be

35 analyzed. If there are not additional files left to analyze in the
list of files 520, the neuron 510 outputs the candidate pool,
as shown at 645. In case of additional files to analyze, the
neuron 510 updates the marker i, for example incrementing
it, to access the next file-i in the list of files 520, as shown

40 at 642.
Alternatively, or in addition, the neuron 510 selects one

file from the candidate pool and outputs the selected file. For
example, the neuron 510 selects the file with the smallest
total of the similarity scores as the output 530. For example,

45 the neuron 510 keeps a running total of the similarity scores
for each file during the comparison, and a candidate file,
which is a file from the candidate pool, with the smallest
running total of the similarity scores is selected as the
output. In other examples, the file with the smallest mean

50 (average) of the similarity scores is selected.
FIG. 7 depicts an example neural network 700 used for

selecting an identifier file from the input list of files 520,
according to one or more embodiments of the present
invention. The neural network 700 includes multiple neu-

55 rons 510 that receive, as input, the list of files 520. Each
neuron 510 provides respective outputs 530 of candidate
files based on an activation function of each neuron 510. For
example, the activation function for a first neuron may
include a different similarity score threshold than that of a

60 second neuron from the set of neurons in a layer. Alterna-
tively, or in addition, a first neuron may use a different set
of file attributes to compute the similarity score than a set of
file attributes used by a second neuron. For example, the first
neuron uses a filename, while a second neuron uses a file

65 size to compute respective similarity scores.
Thus, neurons 510 from a first layer of the neural network

700 provide a set of files as output 530, the outputted files

US 10,585,853 B2
11

being candidates for being an identifier file for the software
product being processed by the neural network 700. The
output 530 from the neurons 510 of the first layer is used as
input to neurons 510-B of a second layer of the neural
network 700. The neurons 510-B has an activation function
that computes and compares similarity scores of the files
output by the first layer, and thus selects and outputs 530-B
the identifier file for the software product from the candidate
files output by the first layer neurons 510.

It should be noted that although FIG. 7 depicts only two
layers, in one or more examples, the neural network 700
includes additional layers of neurons, where the output from
neurons from a preceding layer is used as input by the
neurons of the next adjacent layer.

In one or more examples, the identifier file finder 110
updates a license of the software product based on the
identifier file corresponding to the software product. For
example, the license stored on the computer system 122 is
updated to include a hash or some other computation based
on the identifier file. Accordingly, during a license audit
process, the identifier file is verified along with expiry and
other validation information of the license of the software
product.

FIG. 8 depicts a flowchart for training the neural network
700, according to one or more embodiments of the present
invention. The identifier file finder 110 implements the
method to train the machine learning algorithm it uses for
selecting the identifier file a for a software product. The
identifier file finder 110 configures a file system of the
computer system 122 with known installed software prod-
ucts 126 and populates the identifier file database 124 with
identifier files of the installed software products 126, as
shown at 805. The identifier file finder 110 scans the file
system to create a list of files that are in the file system, as
shown at 810.

The identifier file finder 110 further installs a predeter-
mined software product, say software product X onto the
computer system 122, as shown at 820. The software prod-
uct X is to be associated with an identifier file, file-Y, as
shown at 810. The file-Y is the expected result in this case,
for example, because of the installed software 126 that are
already installed on the computer system 122.

The identifier file finder 110 scans the file system a second
time, after the installation of the software product X, to
identify a list of files installed by the software product X, as
shown at 830. The identifier file finder 110 further executes
the machine-learning algorithm to select identifier file Z for
the software product X, as shown at 840. The identifier file
finder 110 checks if the file Z selected by the machine
learning algorithm, such as the neural network 700 matches
the expected result file Y, that is, in other words, checks if
file Z output by the algorithm is same as the file Y, as shown
at 850. If the expected result matches the output of the
machine learning algorithm, the training of the machine
learning algorithm is completed, as shown at 870.

If the expected result does not match the output from the
machine-learning algorithm, the machine-learning algo-
rithm parameters are adjusted, as shown at 860. For
example, the similarity scores for one or more neurons of the
neural network may be adjusted (increased/decreased). The
machine-learning algorithm is further executed using the list
of files for the software product X until the output matches
the expected result, in this case, file Y, as shown at 840.

FIG. 9 depicts a flowchart for finding an identifier file for
a software product installed on a computer system, accord-
ing to one or more embodiments of the present invention. In
one or more examples, the method is initiated in response to

12
the identifier file finder 110 receiving a request to select the
identifier file for the software product, say software product
X, that is about to be installed on the computer system 122.

The identifier file finder 110 scans the file system of the
5 computer system 122 and generates a list of known installed

software products 126 and corresponding identifier file
database 124, as shown at 905. The identifier file finder 110
also creates a list of files in the file system based on the scan,
as shown at 910.

10 Further, the identifier file finder 110 scans the file system
after the software product X is installed, as shown at 920.
The identifier file finder 110 determines a list of files
installed for product X, as shown at 930. For example, the
list of files for software product X is determined by com-

15 puting a delta between a list of files in the file system after
the software product X is installed and the list of files from
before the installation.

The identifier file finder 110 uses a machine learning
algorithm, such as the neural network algorithm, to select an

20 identifier file Z for the software product X, as shown at 940.
The identifier file finder 110 adds the identifier file Z for the
software product X in the identifier database 124, as shown
at 950.

The present technical solutions may be a system, a
25 method, and/or a computer program product at any possible

technical detail level of integration. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the

30 present technical solutions.
The computer readable storage medium can be a tangible

device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an

35 electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes

40 the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-

45 ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,

50 is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted

55 through a wire.
Computer readable program instructions described herein

can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,

60 for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or

65 network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program

US 10,585,853 B2
13

instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present technical solutions may be assem-
bler instructions, instruction-set-architecture (ISA) instruc-
tions, machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the "C" pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user's computer, partly on the user's com-
puter, as a stand-alone software package, partly on the user's
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user's computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present technical solutions.

Aspects of the present technical solutions are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the technical
solutions. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combina-
tions of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer readable pro-
gram instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible

14
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present technical solutions. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-

5 ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in

10 succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in

15 the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

20 A second action may be said to be "in response to" a first
action independent of whether the second action results
directly or indirectly from the first action. The second action
may occur at a substantially later time than the first action
and still be in response to the first action. Similarly, the

25 second action may be said to be in response to the first action
even if intervening actions take place between the first
action and the second action, and even if one or more of the
intervening actions directly cause the second action to be
performed. For example, a second action may be in response

30 to a first action if the first action sets a flag and a third action
later initiates the second action whenever the flag is set.

To clarify the use of and to hereby provide notice to the
public, the phrases "at least one of<A>, , . . . and <N>"
or "at least one of <A>, , . . . <N>, or combinations

35 thereof' or "<A>, , . . . and/or <N>" are to be construed
in the broadest sense, superseding any other implied defi-
nitions hereinbefore or hereinafter unless expressly asserted
to the contrary, to mean one or more elements selected from
the group comprising A, B, . . . and N. In other words, the

40 phrases mean any combination of one or more of the
elements A, B, . . . or N including any one element alone or
the one element in combination with one or more of the
other elements which may also include, in combination,
additional elements not listed.

45 It will also be appreciated that any module, unit, compo-
nent, server, computer, terminal or device exemplified herein
that executes instructions may include or otherwise have
access to computer readable media such as storage media,
computer storage media, or data storage devices (removable

50 and/or non-removable) such as, for example, magnetic
disks, optical disks, or tape. Computer storage media may
include volatile and non-volatile, removable and non-re-
movable media implemented in any method or technology
for storage of information, such as computer readable

55 instructions, data structures, program modules, or other data.
Such computer storage media may be part of the device or
accessible or connectable thereto. Any application or mod-
ule herein described may be implemented using computer
readable/executable instructions that may be stored or oth-

60 erwise held by such computer readable media.
The descriptions of the various embodiments of the

technical features herein have been presented for purposes
of illustration, but are not intended to be exhaustive or
limited to the embodiments disclosed. Many modifications

65 and variations will be apparent to those of ordinary skill in
the art without departing from the scope and spirit of the
described embodiments. The terminology used herein was

US 10,585,853 B2
15

chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What is claimed is:
1. A computer-implemented method for selecting an iden-

tifier file for a software product, the method comprising:
installing the software product on a machine;
determining, for a software product installed on a

machine, a list of files of the software product by
scanning a file system of the machine;

selecting an identifier file from the list of files using a
machine learning algorithm by creating an identifier file
database for the machine, wherein the identifier file
database comprises information of a plurality of iden-
tifier files, each identifier file corresponding to a respec-
tive software product installed on the machine,

wherein selecting the identifier file further comprises:
using a neural network comprising:
neurons in a first layer, each neuron in the first layer:

computing a similarity score for each file in a list of
input files by

comparing the each file with each identifier file from
the identifier file database: and

comparing the similarity score with a respective
predetermined similarity threshold: and

outputting a candidate identifier file based on the
comparison: and neurons in a second layer, a
neuron in the second layer:

receiving the outputs from the neurons in the first
layer, and

selecting the identifier file from the outputs from the
neurons in the first layer: and

updating a license of the software product on the
machine with the selected identifier file.

2. The computer-implemented method of claim 1, further
comprising:

updating the identifier file database by adding information
about the selected identifier file.

3. The computer-implemented method of claim 1,
wherein selecting the identifier file further comprises:

comparing a file from the list of files of the software
product with an identifier file database; and

rejecting the file as the identifier file in response to a
similarity score of the file being above a predetermined
threshold.

4. The computer-implemented method of claim 3,
wherein the similarity score of the file is determined by
comparing one or more attributes of the file with each
identifier file in the identifier file database.

5. The computer-implemented method of claim 4,
wherein the one or more attributes of the file includes at least
one from a group of attributes consisting of filename,
file-size, and file-path.

6. The computer-implemented method of claim 1,
wherein each neuron uses a different predetermined simi-
larity threshold.

7. The computer-implemented method of claim 1,
wherein each neuron uses a different activation function to
compute the similarity score of a file.

8. A computer program product for selecting an identifier
file for a software product installed on a machine, the
computer program product comprising a non-transitory
computer readable storage medium having program instruc-

16
tions embodied therewith, the program instructions execut-
able by a processing circuit to cause the processing circuit
to:

determine a list of files of the software product by
5 scanning a file system of the machine;

select the identifier file from the list of files by creating an
identifier file database for the machine, wherein the
identifier file database comprises information of a plu-
rality of identifier files, each identifier file correspond-

10 ing to a respective software product installed on the
machine,

wherein selecting the identifier file further comprises:
using a neural network comprising:

neurons in a first layer, each neuron in the first layer:
15 computing a similarity score for each file in a list of

input files by
comparing the each file with each identifier file from

the identifier file database: and
comparing the similarity score with a respective

20 predetermined similarity threshold: and
outputting a candidate identifier file based on the

comparison: and neurons in a second layer, a
neuron in the second layer:

receiving the outputs from the neurons in the first layer,
25 and

selecting the identifier file from the outputs from the
neurons in the first layer: and

update a license of the software product on the machine
with the selected identifier file.

30 9. The computer program product of claim 8, wherein the
program instructions further cause the processing circuit to:

compare a file from the list of files of the software product
with an identifier file database; and

reject the file as the identifier file in response to a
35 similarity score of the file being above a predetermined

threshold.
10. The computer program product of claim 9, wherein

the similarity score of the file is determined by comparing
one or more attributes of the file with each identifier file in

40 the identifier file database.
11. The computer program product of claim 10, wherein

the one or more attributes of the file includes at least one
from a group of attributes consisting of filename, file-size,
and file-path.

45 12. The computer program product of claim 8, wherein
the program instructions further cause the processing circuit
to:

update the identifier file database by adding information
about the selected identifier file.

50 13. The computer program product of claim 8, wherein
each neuron uses a different predetermined similarity thresh-
old.

14. The computer program product of claim 8, wherein
each neuron uses a different activation function to compute

55 the similarity score of a file.
15. A system for selecting an identifier file for a software

product installed on a machine, the system comprising:
a memory; and
a processor coupled to the memory, the processor con-

60 figured to:
determine a list of files of the software product by

scanning a file system of the machine;
select the identifier file from the list of files by creating

an identifier file database for the machine, wherein
65 the identifier file database comprises information of

a plurality of identifier files, each identifier file
corresponding to a respective software product

US 10,585,853 B2
17 18

installed on the machine, wherein selecting the iden-
tifier file further comprises:

using a neural network comprising:
neurons in a first layer, each neuron in the first layer:

computing a similarity score for each file in a list of 5

input files by comparing the each file with each
identifier file from the identifier file database: and

comparing the similarity score with a respective pre-
determined similarity threshold: and

outputting a candidate identifier file based on the com- 10

parison: and neurons in a second layer, a neuron in
the second layer:

receiving the outputs from the neurons in the first layer,
and

selecting the identifier file from the outputs from the 15

neurons in the first layer: and
update a license of the software product on the machine

with the selected identifier file.
16. The system of claim 15, wherein each neuron uses a

different predetermined similarity threshold. 20

* * * * *

	Bibliography
	Drawings
	Description
	Claims

