Hydrauliczna mieszanina do lokowania niebezpiecznych dla środowiska odpadów w składowiskach gruntowych

(43) Zgłoszenie ogłoszono:
15.03.2010 BUP 06/10

(45) O udzieniu patentu ogłoszono:
30.05.2014 WUP 05/14

(73) Uprawniony z patentu:
PRZEDSIĘBIORSTWO ROBÓT GEOLOGICZNO -
- WIERTNICZYCH GRAŻYNA JANIK & ROMAN
KUŚ SPÓŁKA JAWNA, Sławków, PL

(72) Twórcy wynalazku:
ROMAN KUŚ, Sławków, PL
GRAŻYNA JANIK, Sławków, PL
PIOTR IZAK, Kraków, PL
ŁUKASZ WÓJCIK, Bytom, PL
DANIEL SŁOWIKOWSKI, Łazy, PL

(74) Pełnomocnik:
rzecz. pat. Wojciech Tabor
Opis wynalazku

Przedmiotem wynalazku jest samoczynająca się hydrauliczna mieszaniwa do lokowania niebezpiecznych dla środowiska odpadów w składowiskach gruntowych, zwłaszcza w podziemnych wyrobiskach kopalnianych lub warstwowych formacjach skał osadowych. Rozwiązanie dotyczy ochrony środowiska, rekultywacji zdegradowanych terenów poprzemysłowych, unieszkodliwiania i zagospodarowania odpadów niebezpiecznych pochodzących z procesów przemysłowych i oczyszczania gruntów, szczególnie połotorych odpadów górnicza rud metali.

Znana z polskiego opisu patentowego nr 193 331 mieszaniwa odpadowa - przeznaczona do wypełniania pustek poeksploatacyjnych górotworu, rekonsolidacji zbiorników zawalowych kopalni - składa się z odpadów połotorych o średnim zagęszczeniu 450 do 600 g/dm³ i nieodwodnionego wapna pokarbidowego o wilgotności przemijającej 50%, w udziałach objętościowych od 2 : 1 do 4 : 1. Mieszani na ta może zawierać dodatek popiołów lotnych, których udział objętościowy w stosunku do odpadów połotorych i nieodwodnionego wapna pokarbidowego wynosi od 1 : 1 : 0,1 do 2 : 2 : 2. Do ddatek popiołów poprawia charakterystykę zestalania się zawiesin wodnych w miejscu lokowania i buforuje ewentualny rozkład siarczków z pirytu. Występujący w trakcie sedymencji i zestalania miesza niny odciek nadmiaru wody musi być odbierany chodnikami wodnymi do kolarzów i przepompowy wany do zbiornika na powierzchni. W zależności od składu wiązania mieszani przemianę rozpoczyna się od 5 -tego do 20-tego dnia od jej sporządzenia i trwa od 1-nej do 3 dob. Wapno pokarbidowe jako aktywator wiązania stosowane jest również w mieszaniach przedstawionych w polskich opisach patentowych nr 173 452 i 174 316. Zaprawa oraz inne mieszany wykorzystujące drogie aktywatory procesu wiązania, takie jak cement portlandzki, chlorek wapna, żywie acrylowe i krzemianowe mieszany stabilizujące złożone ze szkła wodnego i utwardzacy organicznych.

Celem wynalazku jest opracowanie mieszani hydraulicznej, której skład optymalizuje poniesione koszty i właściwości eksploatacyjnej zestalowanej masy Mieszani przemianę według wynalazku tworzy: woda zawiesina uladrowana lepiszcza mineralnego o zawartości cząstek średnicy mniejszej od 20 μm powyżej 90%, zwłaszcza gliny, która przy gęstości ρ =1,20 do 1,30 T/m³ stanowi 35-55% wag. mieszani, oraz cement w ilości 10-15% wag., szkło wody w ilości 0,2-0,5% wag. i odpady niebezpieczne w ilości 30-35%. Odpowiednie proporcje i skojarzenie lepiszcza mineralnego z użytym w niewielkich ilościach aktywatorami wiązania dają w efekcie bardzo korzystne właściwości materiałow wej, stwardniałej struktury:

- zdolność do zatrzymywania wody zrobowej,
- bardzo niską przepuszczalność, o współczynniku filtracji poniżej 1 x 10⁶ m/s,
- wytrzymałość na ściskanie powyżej 1 MPa, oraz
- plastyczność zapewniającą utrzymanie własności immobilizacyjnych odpadów niebezpiecznych.

Szczerbę użyskanej struktury i brak odceków sprawiają, że wkomponowane substancje szkodliwe nie podlegają wymywaniu i materiał nadaje się do zabudowania w rekultywowanych gruntach.

Przedmiot wynalazku przedstawiony jest w opisanych poniżej dwóch przykładach wykonania mieszani.

Przykład 1.

Do otrzymanego w mikserze roztworu bazowego zawiesiny wodnej ię Belchatów o gęstości 1,25 g/cm³ i w ilości 64,5% wag. dodano w agitatorze; cement w ilości 15% wag., szkło wodne w ilości 0,5% wag., i odpady połotorych rudy miedzi w ilości 20% wag. Po 28 dniach dojrzewania walcową próbkę stwardniałego zaczynu umieszczono w prasie filtracyjnej i zalewano wodą destylowaną. Następnie próbkę oceniono ciśnieniem 3 bar i w czasie od 24 do 120 h wyznaczyano szybkość przepływu wody przez badaną próbkę mierząc ilość odcieku w jednostce czasu wagę elektronczną WPS 720/C2/ firmy Radwag. Na podstawie pomiaru szybkości przepływu wyznaczono współczynnik filtracji k = 1,9 x 10⁻⁸ m²/s. Wytrzymałość na ściskanie próbki wyniosła 1,10 MPa.

Przykład 2

Próbka stwardniałego zaczynu wykonana z takich samych składników ale o zmienionych udziałach wagowych: 54,5% wag. zawiesiny wodnej o gęstości 1,25 g/cm³ ilę Belchatów, 15% wag. cemen tu, 0,5% wag. szkła wodnego i 30% wag. odpadu połotorych rudy miedzi - wykazała współczynnik filtracji 6,0 x 10⁻⁸ m/s i wytrzymałość na ściskanie 1,20 MPa.
Zastrzeżenie patentowe

Hydrauliczna mieszanka do lokowania niebezpiecznych dla środowiska odpadów w składowiskach gruntowych, zwłaszcza w podziemnych wyrobiskach kopalnianych lub warstwowych formacjach skał osadowych, sporządzona na bazie spojwa mineralnego z dodatkiem odpadów niebezpiecznych pochodzących z procesów przemysłowych i oczyszczania gruntów, szczególnie Meflokalowych odpadów górniczych rud metali, znamienna tym, że tworzy jamę wodną zawiesinu ultradrobnego lepiszcza mineralnego o zawartości cząstek średnicy mniejszej od 20 μm powyżej 90%, zwłaszcza gliny, która przy gęstości ρ=1,20 do 1,30 T/m³ stanowi 35-55% wag. mieszany, oraz cement w ilości 10-15% wag., szkło wodne w ilości 0,2-0,5% wag. i odpady niebezpieczne w ilości 30-35%.