1	1	q
١.		0

(12)

Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 3 534 294 A1**

EUROPEAN PATENT APPLICATION

(43) Date of publication: (51) Int Cl.: G06K 9/00 (2006.01) 04.09.2019 Bulletin 2019/36 (21) Application number: 18159762.6 (22) Date of filing: 02.03.2018 (84) Designated Contracting States: · Dziech, Andrzej AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 30-112 Kraków (PL) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO · Rusek, Krzysztof PL PT RO RS SE SI SK SM TR 33-322 Lipnica Wielka (PL) **Designated Extension States:** Matiolanski, Andrzej BA ME 31-411 Kraków (PL) **Designated Validation States:** Guzik, Piotr KH MA MD TN 38-400 Krosno (PL) (71) Applicant: Akademia Gorniczo-Hutnicza im. (74) Representative: Bury, Marek Stanislawa Bury & Bury Staszica w Krakowie UI. Przyczolkowa 124 30-059 Krakow (PL) 02-968 Warszawa (PL) (72) Inventors: · Grega, Micha 30-212 Kraków (PL)

(54) COMPUTER IMPLEMENTED METHOD FOR PROCESSING A FRAME SEQUENCE, DIGITAL FRAME PROCESSING DEVICE COMPUTER PROGRAM PRODUCT AND MONITORING SYSTEM

A computer implemented method for processing (57)a frame sequence to generate an alarm when a dangerous object is being used including a frame acquisition (11) step, a division into sub-regions (12) step, object identification (13) step and decision making (14) step, in which alert generation (16) step is executed if decision made in decision making step (14) is positive. Division into sub-regions (12) step includes division of the frame into sub-regions that overlap and have minimal dimension of at least 100 pixels. Object identification step (13) is executed in sub-region by sub-region manner and includes processing a frame with a deep neural network trained to detect the dangerous object and returns probability of detection for sub-regions of the frame formed into probability map corresponding to the frame. Decision made in decision making (14) step is based on at least a first criterion and a second criterion applying to the subsequent frames and corresponding probability maps. The first criterion includes probability of detection within a predefined number N of subsequent frames being above predefined value of p_{min} . The second criterion includes the minimal distance between sub-regions in which probability of detection above predefined value of $\ensuremath{p_{\min}}$ was observed in subsequent frames being lower than given value d_{max} .

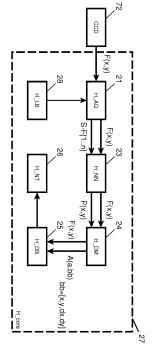


Fig. 2

30

Description

[0001] The invention concerns a computer implemented method for processing a frame sequence to detect a dangerous object, a digital frame processing device therefore, a computer program product and monitoring system with automatic enhancement of detection of events involving use of dangerous objects. Dangerous object can be understand as gun, axe, knife, riffle or any other potentially dangerous tool not used normally within a monitored facility.

[0002] US patent no US6028626 discloses a surveillance system having at least one primary video camera for translating real images of a zone into electronic video signals at a first level of resolution. The system includes means for sampling movements of an individual or individuals located within the zone from the video signal output from at least one video camera. Video signals of sampled movements of the individual is electronically compared with known characteristics of movements which, are indicative of individuals having a criminal intent. The level of criminal intent of the individual or individuals is then determined and an appropriate alarm signal is produced. In an attempt to analyze behavioral patterns to determine criminal intent it is very difficult to avoid false alarms. False alarms on the other hand tend to "train" people using surveillance system not to react to the situations identified as dangerous.

[0003] US patent no US9524426 discloses a human monitoring system that includes a plurality of cameras and a visual processor. The plurality of cameras are disposed about a workspace area, where each camera is configured to capture a video feed that includes a plurality of image frames, and the plurality of image frames are time-synchronized between the respective cameras. The visual processor is configured to receive the plurality of image frames from the plurality of vision-based imaging devices and detect the presence of a human from at least one of the plurality of image frames using pattern matching performed on an input image. The input image to the pattern matching is a sliding window portion of the image frame that is aligned with a rectified coordinate system such that a vertical axis in the workspace area is aligned with a vertical axis of the input image.

[0004] An aim of the invention is to provide reliable automatic means aiding a human supervisor in detection of dangerous situations involving dangerous objects enhancing his reaction time. This aim is obtained with a computer implemented method for processing a frame sequence to generate an alarm when a dangerous object is being used, including a frame acquisition step, a division into sub-regions step, object identification step and decision making step, in which alert generation step is executed, if decision made in decision making step is positive. Division into sub-regions that overlap and have minimal dimension of at least 100 pixels - neural network recognition of dangerous objects is more reliable above

this value. Use of overlapping sub-regions reduces a risk of object located on the border of sub-regions not being detected. Object identification step is executed in subregion by sub-region manner and includes processing a frame with a deep neural network trained to detect the dangerous object and returns probability of detection for sub-regions of the frame formed into probability map corresponding to the processed frame. Application of deep neural network enables efficient detection and robust

¹⁰ training. Decision made in decision making step is based on at least a first criterion and a second criterion applying to the subsequent frames and corresponding probability maps. The first criterion includes probability of detection within a predefined number N of subsequent frames be-

¹⁵ ing above predefined value of p_{min} . The second criterion includes the minimal distance between sub-regions in which probability of detection above predefined value of p_{min} was observed in subsequent frames being lower than given value d_{max} . It has been shown that if the alerts ²⁰ are too frequent people supervising the monitoring systems tend to react slower or ignore the alerts. One false alert daily was identified as reasonable maximum. Therefore, the specificity is crucial for the dangerous objects recognition system. Combination of criterions in the ²⁵ method according to the invention enable obtaining

enough specificity for the number of the false alarms not to exceed one daily.

[0005] Advantageously the value of d_{max} is predetermined in system calibration or is a result of Kalman filtering of probability map.

[0006] Advantageously the frames and the corresponding probability maps are stored into database. Storing the frames and probability maps enable adaptation of the neural network training for specific situations.

³⁵ **[0007]** Frame acquisition advantageously includes background detection and removal which saves computational power and further reduces number of false alarms.

[0008] Probability map is advantageously subjected to 40 high pass filtration prior to being used in decision making step. Consequently only dynamic situations are detected and false alarms are further avoided while system remains sensitive to typical dangerous situations.

[0009] The method according to the invention advantageously further includes a load balancing step, in which computational load of particular step is determined and if needed some of the input frames are dropped.

[0010] The aim of the invention is further obtained by providing a digital frame processing device having a
50 memory and adapted to receive a frame sequence and means to generate an alarm according to the invention is adapted to execute a method according to the invention.

[0011] The device is advantageously adapted to re-⁵⁵ ceive at least two frame sequences in parallel and process them in parallel.

[0012] The aim of the invention is further obtained by providing a computer program product comprising a set

of instructions causing a frame processing device execute a method according to the invention.

[0013] The aim of the invention is also obtained by providing a monitoring system having at least one camera delivering frames via communication means to console having a display in monitoring center, in which frames from camera are processed with a digital frame processing device according to the invention executing a method according to invention. In such configuration system size is not limited by computing power even when high number of cameras are used.

[0014] The monitoring system advantageously has at least two cameras.

[0015] Advantageously each of the at least two cameras is connected to an individual digital frame processing device. Alternatively both of the at least two cameras are connected to the same digital frame processing device.

[0016] Communication means advantageously are telecommunication network. Use of tcpip network makes system very flexible and easy to install in typical facilities.[0017] The invention has been described below in detail, with reference to the following figures:

Fig. 1 showing a flow chart of the embodiment of a method according to the invention;

Fig. 2 showing a block diagram of a digital frame processing device according to the invention;

Fig. 3a and Fig. 3b showing conversion of image to sub-regions and probability map;

Fig. 4 showing sequence of images with moving gun and respective probability map;

Fig. 5 shows the block diagram of the embodiment of deep neural network;

Fig. 6 shows a flowchart of decision making;

Fig. 7 shows a monitoring system with a plurality of cameras and frame processing devices according to the invention connected to the human operated monitoring center.

[0018] A block diagram of an embodiment of the method according to the invention is shown in Fig. 1. The method is running on a digital processing device with implemented modules performing particular steps. The method comprises a frame acquisition 11 in which a frame is received from external imaging device, a CCD camera. In this step the frame is preprocessed. Subsequently a step of division into sub-regions 12 is executed. The frame is divided into a number of overlapping subregions preferably rectangles having a lower dimension of at least 100 pixels. These sub-regions 32 are used in object identification 13. Each sub-region 32 is independently processed using deep neural network trained to detect the dangerous object - a hand carrying a gun. The output of neural network is a probability of detection for every sub-region. The probabilities form a probability map which is used in subsequent decision making step. The decision is based on a results of detection in 8 subsequent frames. Two criterions are applied. The first criterion includes probability of detection within a predefined number 8 of subsequent frames being above predefined threshold value of p_{min} . Threshold value of p_{min} is selected from a range 0.8 \div 1 depending on the object to be recognized. Value optimal for handgun falls between

0.95 and 0.98. Good results were obtained for 0.96. The second criterion depends on the minimal distance between sub-regions in which probability of detection above

¹⁰ predefined value of p_{min} was observed in subsequent frames being lower than given value d_{max} which preferably is in a range of 0.3 to 1 of the sub-region size. It allows reduction of the number of false alarms. The value of d_{max} is estimated using genetic algorithm according

 to Mitchell, Melanie (1996). An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press. ISBN 9780585030944. The algorithm's fitness function is based on following factors: maximization of True Positive (TP) rate, maximization of TP frames for each detected
 event and minimization of False Positive detections. The

sub-optimal value of d_{max} is chosen according to Pareto meaning.

[0019] If both criteria are met alert generation 16 step is executed. It is a sound alarm, visual alarm, email, text
 ²⁵ messages (SMS), video messages, voice messages (Calls), on-screen alert, API to existing on-site alarm installations, API to remote alarm installations or law enforcement services or any combination of the above.

[0020] A block diagram of digital frame processing device according to the invention is shown in Fig. 2. The above method steps are executed by respective software modules implemented in FPGA matrix (Virtex 7) or GPU (GeForce GTX 970, 4GB).

[0021] H_CORE module 27 is the main module of the system responsible for managing the other modules. It is setting up the configuration which is loaded from the configuration files. The configuration file includes following parameters in Windows .ini format:

- 40 Cfile: configuration file id string,
 - autotest: system autotest trigger, boolean: true/false,
 - mode (video acquisition mode, integer:

1 - video capture from file,

- 2 video capture from IP camera,
- filename: name of filename to process, string,
- camip: ip number of a camera to connect, string,
- camuser: camera user login, string,
- campwd: camera user password, string,
- res: camera resolution, string,
- fps: camera frame per second, int,
- codec: camera codec based on camera's settings, int,
- window: neural network window size, int,
- decay: background learning rate for neural network processing, float,

45

50

55

- probability: p_{min}, threshold for minimum accepted probability of neural network, float, for handgun 0.96,
- checkpoint: neural network checkpoint, string,
- maxdetections: minimum consecutive detections required to recognize an event, int, typically 8,
- maxdistance: d_{max} maximum distance between detections in consecutive frames for an event, int, e.g. 80),
- usekalman: trigger to use Kalman filtering, boolean, true/false,
- dbwrite: write data to database trigger, boolean, true/false,
- fx: x-axis rescaling factor for frames before saving into database, float, e.g. 0.25,
- fy: y-axis rescaling factor for frames before saving into database, float, e.g. 0.25,
- fps: stored in database video sequence frames per second, int, e.g. 30,
- visualization: trigger to enable visualization on a screen during processing, boolean, true/false.

[0022] The configuration can be reloaded during system operation without restarting. H_CORE module 27 starts others modules and establishes communication between them using data queues. H_CORE module 27 manages other modules, each module can be restarted in case of failure. Stop signal received by H_CORE is broadcasted to other modules in order to stop the whole system in case of the fatal system failure or if system shutdown is required by the maintenance which is triggered by the user.

[0023] H_AQ module 21 acquires a frame 31 from the data source such as a video stream from a camera 72, URL or offline file. Data sources can be interchanged during the normal operation without a need of restarting. In an absence of an input image the H_AQ module 21 waits for the input. The acquired frame is checked in order to match the required dimensions in pixels. If that test is failed the acquired frame is dropped from further processing. In order to save computational power only non-repeating frames are processed. To select such frames the Gaussian Mixture Model (GMM) [Zoran Zivkovic. 2004. Improved Adaptive Gaussian Mixture Model for Background Subtraction. In Proceedings of the Pattern Recognition, 17th International Conference on (ICPR'04) Volume 2 - Volume 02 (ICPR '04), Vol. 2. IEEE Computer Society, Washington, DC, USA, 28-31. DOI: http://dx.doi.org/10.1109/ICPR.2004.479] motion detection algorithm is used. The algorithm detects any changes between current and previous frame. In case of lack of changes the frame is treated as repeated/duplicated and hence dropped. Such frames are thus not processed by other modules. Otherwise frame is put into data queue between H_AQ module 21 and H_NN module 23.

[0024] The frame 31 from the frame acquisition H_AQ module 21 is processed in the object detection module H_NN 23 which firstly divides the frame into overlapping square sub-regions of size not less than 100 px. The

stride of the sub-region must be less than a half of it size. Each sub-region is afterwards processed by a deep convolutional neural network trained to output probability of dangerous object in the given sub-region. The network consists of a bank of trained digital filters producing image features and the fully connected multilayer perceptron for the final classification. This results in a probability map corresponding to the frame, filled with probabilities corresponding to the particular sub-regions within a frame.

10 A relation between a frame and probability matrix is shown schematically in Fig. 3a and b. In Fig. 3a a frame 31 is shown with a person carrying a dangerous object 33. Frame 31 is divided into sub-regions 32. In Fig. 3b a corresponding probability map 34 is shown. Maximal val-

¹⁵ ue 35 in the probability map corresponds to the sub-region containing dangerous object 33. Frame sequence of real life scenario and and corresponding probability maps with probabilities represented as intensity is shown in Fig. 4.

20 [0025] Processing of a sub-region in H_NN module 23 is shown in Fig. 5. The input sub-region 32 of a full frame 31 is fed to convolutional neural network that consists of 5 subsequent convolutional blocks 56. Each of these blocks contains two convolutional layers. One layer has
25 learnable filters of size 3x3 52, and a set of learnable filters of size 1x1 53. The other layer is max pooling layer 54. The output of convolutional blocks is then passed to fully connected layer 55 which outputs the probability that the input frame 51 contains a dangerous tool.

³⁰ [0026] In order to avoid constant misclassification in some of the sub-regions corresponding to stationary background objects resembling the dangerous object the neural network is trained using standard backpropagation algorithm to recognize, the probability map is filtered
 ³⁵ by a high pass digital temporal filter. The filter works as follows. First using a buffer storing one previous frame, the background of the probability is estimated by the formula:

40

$$b(t+1) = \alpha * b(t) + (1-\alpha) * p(t),$$

where p(t) is the neural network output and α is a parameter controlling the speed of background estimation or ⁴⁵ equivalently impulse response of the digital filter. Then the update to the background u (t) = p(t)-b(t) is computed. In this approach a static misclassification is removed by the subtraction operation. The final output of the object detection H_NN module 23 is the coordinates of the sub-⁵⁰ region of the highest value of u(t).

[0027] Frame and output from H_NN module 23 are sent to the H_DM module 24 where final decision about raising alarm is made. The decision making flow chart is shown in Fig. 6. In step 61 results are received from the

⁵⁵ H_NN module 23. The H_DM module 24 in step 62 takes a preconfigured number of N, where N is in range of 6-10 depending on the kind of dangerous tool, subsequent frames to provide reliable alert in case of gun being used and avoid false detections. According to test with the human supervisors, only one false detection daily is acceptable so that supervisors were not biased that detections are likely false. For detection of handgun 8 proved to be the best choice. In step 63 it is tested weather in all 8 subsequent frames the maximal probability of detection exceed a threshold of value. For a handgun threshold of 0.96 was identified as best choice. If the probability is above the threshold for all 8 consecutive frames step 64 is executed otherwise step 62 is executed again. In step 64 it is tested if the distances between consecutive detections (maximal probabilities) is lower than d_{max} . If so alarm is raised in step 65. Otherwise step 62 is executed again.

[0028] Other numbers of consecutive detections in consecutives frames may also bring good effects. Reasonable effects were obtained for numbers between 6 and 10. Secondly distance between maximums in adjacent frames must not exceed capabilities of a model of human being. There are two approaches to obtain that. They can be used independently or combined.

[0029] First approach is the Kalman Filter method with a set of given parameters which predicts the coordinates of the next detection. The parameters is fitted due to specific installation, exemplary matrixes values are:

[[1, 0, 0, 0], [0, 1, 0, 0]], [[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0]

[0, [0,			0], 1]],
[0,	1,	0,	
[0,	0,	1,	

The matrix contains weights used in prediction process. The transition matrix is used to determine object's position in the future [Mohinder S. Grewal and Angus P. Andrews. 2014. Kalman Filtering: Theory and Practice with MATLAB (4th ed.). Wiley-IEEE Press]. If the distance between prediction and current detection is smaller than the configured parameter the detection is classified as the belonging to the same event.

[0030] The second approach is based on a distance calculated between positions of consecutive detections. If the distance is smaller than the configured threshold value d_{max} , the detection is classified as belonging to the same event. The distance is calculated according to the Euclidian measure in pixels. Threshold value d_{max} is 0.3 \div 1 of the sub-region size.

[0031] The alarm is raised by user notification H_NT module 26 when the event lasts longer than configured number of frames. 8 was typically used but $6 \div 10$ proved

to be a range in which maximal number of false detections daily was reachable. Increasing the value limits the sensitivity of the system while decreasing the value increases the sensitivity of the system. Increased sensitivity re-

- ⁵ sults in higher detection probability at a cost of higher false alarm probability. Decreased sensitivity yields the revered effect. The frame and information about raised alarm is put into data queue between H_DM module 24 and H_DB module 26.
- 10 [0032] Frame and output from decision making H_DM module 24 are send to H_DB module 26 where the data is stored in the database. The H_DB module 26 saves all the alarms and video sequences which caused those alarms. H_DB module 26 aggregates frames for a given

¹⁵ period of time to buffer video in the database and in case of the event being detected and alarm raised to store permanently a frame sequence which starts before the event and ends after the event. The final stored video starts N seconds before the event and ends N seconds

²⁰ after. The N value is set by a user, typical value is 15. Increasing the value results storing wider context of an detected event in database, when decreasing the value results reducing amount of data stored in database. Storing permanently only the recording of the context what

²⁵ caused the alarm itself allows future investigation and development of the system as well as evidencing the events despite limited capacity of the database memory.
 H_DB module 26 provides also real time visualization. The frames with marked detected objects and alarms are
 ³⁰ displayed on the screen to the users.

[0033] User notification module H_NT 25 uses data stored in database and provides a user notification service. The system uses nine types of notifications: sound alarm, visual alarm, email, text messages (SMS), video

³⁵ messages, voice messages (Calls), on-screen alert, API to existing on-site alarm installations, API to remote alarm installations or law enforcement services or any combination of the above. Notification process uses a scheduled address book in order to notify different users depending on the current time. The API allows to integrate

the system with third party software.

[0034] The frame processing device according to the invention is a key element of the monitoring system according to the invention. Exemplary block diagram of the

⁴⁵ system is shown in Fig. 7. In such system cameras are connected with monitoring center 74 via telecommunication network. Frames from camera are processed with frame processing devices according to the invention before those frames are delivered to the monitoring center

⁵⁰ 74 and shown to the human supervisor on a screen of a console 75. Alerts generated by the frame processing devices are shown to the supervisor simultaneously with a dangerous object. Information regarding sub-region containing dangerous object is used to draw attention of the human supervisor to particular part of the frame. It is highlighted or encircled in the displayed frame sequence. Frame processing devices can cooperate with single camera individually or be fed with a multiple streams of the supervisor of a screen of a device of a screen of a construction of a screen of a device of a screen of a device of a screen of a construction of the supervisor to particular part of the frame. It is highlighted or encircled in the displayed frame sequence.

[0035] It is possible to use single monitoring center 74 with a human operated console 75 with a remote surveillance systems 71a, 71b located in different spatially separated facilities. A block diagram of an embodiment shown in Fig. 7 corresponds to an example of such system.

[0036] By way of example each remote surveillance system 71a, 71b, has two cameras 72a, 72b. In the first remote surveillance system 71a two cameras 72a are connected directly via cable to the same digital frame processing device 73a located in the same facility as the remote surveillance system 71a. In the second remote surveillance system 71b, two cameras 72b are connected via digital communication network to a digital frame processing device 73b located in the monitoring center 74 with console 75 having a screen and operated by human supervisor.

[0037] Monitoring system according to the invention is modular. Any elements can be connected by cable, optical fibres, wired or wireless telecommunication networks including WiFi, LTE, Ethernet and others. Use of multiples frame processing devices enables easy growth of the system size not limited by the human operated console 75 computational power. Any common or industrial cameras can be used in the system routinely by a person skilled in the art.

[0038] Frame processing device according to the invention can be used within an existing system, connected with or more cameras and the monitoring center. The later connection is particularly easy with existing telecommunication networks that are usually provided in monitored facilities. Also radio mobile telecommunication 35 networks can be used for such purpose.

[0039] It should be noted that the embodiments of the invention described above are meant only to illustrate rather than limit the invention, which is defined by attached claims. Those skilled in the art will be able to design many alternative embodiments. The invention may be implemented in a computer program including at least code portions for performing steps of a method according to the invention when run on a programmable frame processing device, such as a computer system, signal processing, FPGA matrix or enabling said frame processing device to perform functions of a device according to the invention. The computer program may for instance include one or more of: a subroutine, a function, a procedure, an object method, an object implementation, an executable application, an applet, a servlet, a source code, an object code, a shared library/dynamic load library and/or other sequence of instructions designed for execution on a computer system. The computer program may be provided on a data carrier, such as an optical disc, a hard disk, magnetic disk or solid state disk, stored with data loadable in a memory of a computer system, the data representing the computer program. The data

carrier may thus be a tangible data carrier. The data carrier may be a data connection, such as a telephone cable or a network cable.

[0040] In the attached patent claims, use of the verb "comprise" and its conjugations does not exclude the presence of elements or steps other than those stated in a claim. The article "a" or "an" preceding an element does not exclude the presence of a plurality of such elements. The invention may be implemented by means of hard-

10 ware comprising several distinct elements, and by means of a suitably programmed computer. In the device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually

15 different dependent claims does not indicate that a combination of these measures cannot be used to advantage.

Claims

20

25

30

40

45

50

55

1. A computer implemented method for a frame sequence processing to generate an alarm when a dangerous object is being used, including a frame acquisition (11) step, a division into sub-regions (12) step, object identification (13) step and decision making (14) step, in which alert generation (16) step is executed if decision made in decision making step (14) is positive,

characterized in that

division into sub-regions (12) step includes division of the frame into sub-regions that overlap and have minimal dimension of at least 100 pixels,

object identification step (13) is executed in sub-region by sub-region manner and includes processing a frame with a deep neural network trained to detect the dangerous object and returns probability of detection for sub-regions of the frame formed into probability map corresponding to the frame,

decision made in decision making (14) step is based on at least a first criterion and a second criterion applying to the subsequent frames and corresponding probability maps, wherein

the first criterion includes probability of detection within a predefined number N of subsequent frames being above predefined value of p_{min}

and

the second criterion includes the minimal distance between sub-regions in which probability of detection above predefined value of p_{min} was observed in subsequent frames being lower than given value d_{max}.

- The method according to claim 1, characterized in 2. that value of d_{max} is predetermined in system calibration.
- 3. The method according to claim 1 characterized in that value of d_{max} is a result of Kalman filtering of

10

15

25

30

35

40

45

probability map.

- The method according to claim 1 or 2 or 3, characterized in that the frames and the corresponding probability maps are stored into database.
- 5. The method according to any of the claims from 1 to 4, **characterized in that** frame acquisition includes background detection and removal.
- 6. The method according to any of the claims from 1 to 4, **characterized in that** probability map is subjected to high pass filtration prior to being used in decision making (14) step.
- 7. The method according to any of the claims from 1 to 5, characterized in that it further includes a load balancing step.
- 8. A digital frame processing device having a memory ²⁰ and adapted to receive a frame sequence and means to generate an alarm, **characterized in that** it is adapted to execute a method according to any of the claims 1 to 7.
- 9. The digital frame processing device, according to claim 8, characterized in that it is adapted to receive at least two frame sequences in parallel and process them in parallel.
- **10.** A computer program product adapted to control frame processing device, **characterized in that** it comprises a set of instructions causing the device to execute a method according to any of the claims 1 to 7.
- 11. A monitoring system having at least one camera (72,72a,72b) delivering frames via communication means to console (75) having a display in monitoring center (74), characterized in that frames from camera are processed with a digital frame processing device (73a, 73b) according to claim 8 or 9 executing a method according to the method according to any of the claims 1 to 7.
- The monitoring system according to claim 10, characterized in that it has at least two cameras (72a, 72b).
- The monitoring system according to claim 10, characterized in that each of the at least two cameras (72a, 72b) are connected to an individual digital frame processing device.
- The monitoring system according to claim 13, characterized in that both of the at least two cameras (72a) are connected to the same digital frame processing device (73a).

15. The monitoring system according to any of the claims 11-14, **characterized in that** communication means are telecommunication network.

7

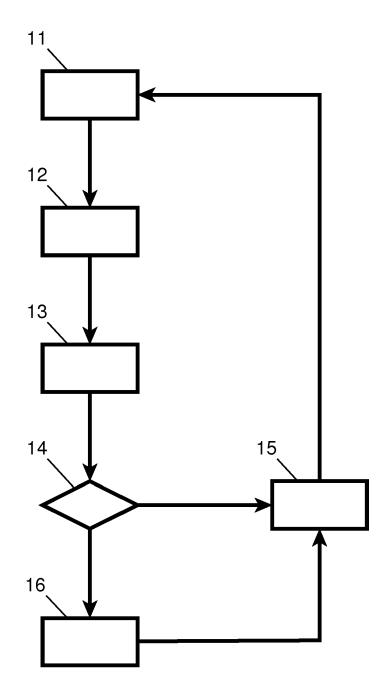


Fig. 1

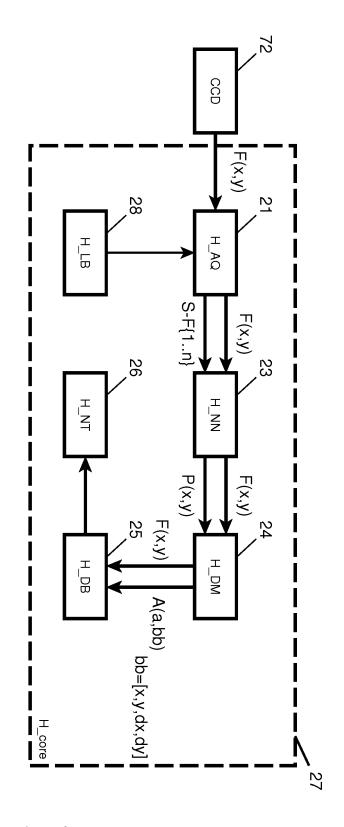
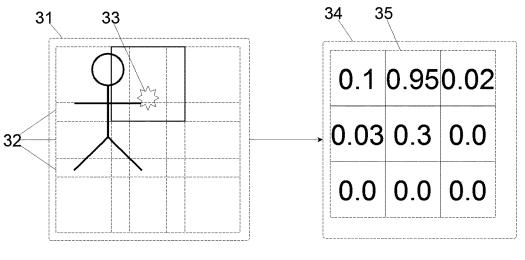
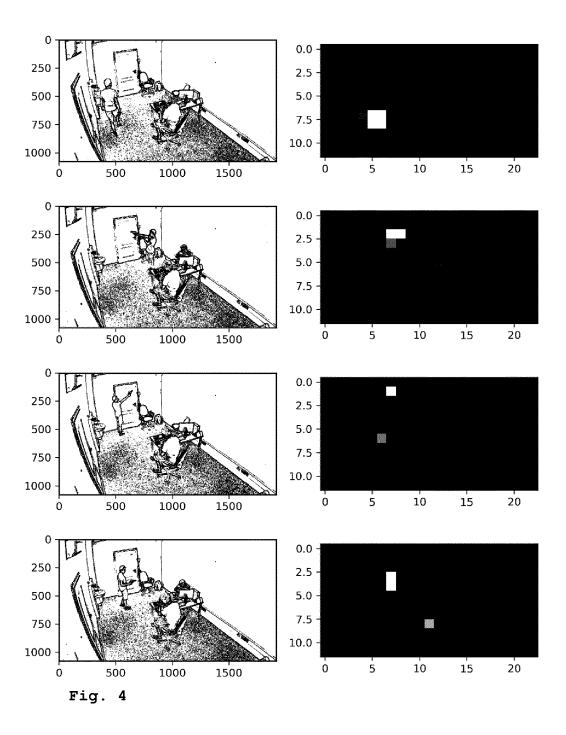


Fig. 2

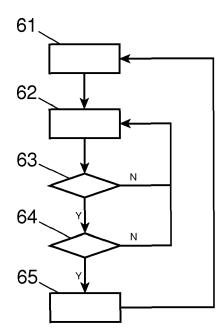
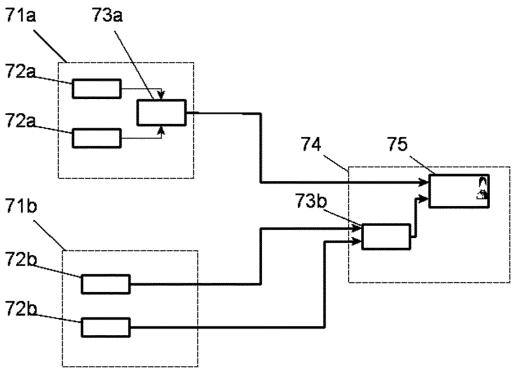


Fig. 3b



EP 3 534 294 A1

EUROPEAN SEARCH REPORT

Application Number EP 18 15 9762

		DOCUMENTS CONSID	ERED TO BE RELEVANT			
	Category	Citation of document with ir of relevant passa	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)	
10 15	X	WO 2008/046662 A1 (SCHOLZ SVEN [DE]) 24 April 2008 (2008 * page 4, line 18 - * pages 7-9 * * pages 12-16 * * page 17, lines 15	· page 6, line 25 *	1-15	INV. G06K9/00	
20	x	OLIN LIBRARY CORNEL 14853, 3 September 2016 (2 XP080723901,	al Network for Fast In Crowded Scenes", UNIVERSITY LIBRARY, 201 L UNIVERSITY ITHACA, NY 2016-09-03),	1-15		
25		DOI: 10.1016/J.CVIU * Sections 1, 3.1-3	3.3, 5 *			
30	A	19 May 2005 (2005-0 * paragraphs [0008]	, [0025], [0026], [0038], [0041] -	1-15	TECHNICAL FIELDS SEARCHED (IPC) G06K	
35	A	EP 1 308 896 A2 (SA LTD [KR]) 7 May 200 * paragraphs [0030]		1-15		
40	A	US 2018/012085 A1 (AL) 11 January 2018 * paragraph [0055]	(BLAYVAS ILYA [IL] ET 3 (2018-01-11) * 	1-15		
45						
1		The present search report has Place of search	been drawn up for all claims Date of completion of the search		Examiner	
50 (100000d) 28 80 8051 Wedd	C X : part Y : part	The Hague ATEGORY OF CITED DOCUMENTS icoularly relevant if taken alone icoularly relevant if combined with anoth	31 August 2018 T : theory or principle E : earlier patent doo after the filing date her D : document oited in	underlying the i ument, but public		
55 WHO	A : technological background O : non-written disclosure P : intermediate document		L : document cited fo	L : document cited for other reasons & : member of the same patent family, corresponding		

EP 3 534 294 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 18 15 9762

5

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

31-08-2018

10	Patent document cited in search report	Publication date	Patent family member(s)	Publication date
15	WO 2008046662 A	1 24-04-2008	AT 431951 T EP 1943612 A1 ES 2327469 T3 WO 2008046662 A1	15-06-2009 16-07-2008 29-10-2009 24-04-2008
	US 2005105765 /	1 19-05-2005	NONE	
20	EP 1308896 4	2 07-05-2003	EP 1308896 A2 JP 4194025 B2 JP 2003203240 A KR 20030037776 A US 2003099376 A1 US 2007003106 A1	07-05-2003 10-12-2008 18-07-2003 16-05-2003 29-05-2003 04-01-2007
25	US 2018012085 /	11-01-2018	CN 107380164 A US 2018012085 A1	24-11-2017 11-01-2018
30				
35				
40				
45				
50				
55				

 $\stackrel{
m V}{=}$ For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 6028626 A [0002]

• US 9524426 B [0003]

Non-patent literature cited in the description

- MITCHELL ; MELANIE. An Introduction to Genetic Algorithms. MIT Press, 1996 [0018]
- Improved Adaptive Gaussian Mixture Model for Background Subtraction. ZORAN ZIVKOVIC. Proceedings of the Pattern Recognition, 17th International Conference on (ICPR'04) Volume 2 - Volume 02 (ICPR '04). IEEE Computer Society, 2004, vol. 2, 28-31 [0023]
- MOHINDER S. GREWAL ; ANGUS P. ANDREWS. Kalman Filtering: Theory and Practice with MATLAB. Wiley-IEEE Press, 2014 [0029]