
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
2

87
9

40
9

A
1

TEPZZ 8794Z9A_T
(11) EP 2 879 409 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
03.06.2015 Bulletin 2015/23

(21) Application number: 14003975.1

(22) Date of filing: 26.11.2014

(51) Int Cl.:
H04S 7/00 (2006.01)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME

(30) Priority: 27.11.2013 CA 2835490

(71) Applicant: Akademia Gorniczo-Hutnicza im.
Stanislawa
Staszica w Krakowie
30-059 Krakow (PL)

(72) Inventors:
• Ziolko, Bartosz

30-364 Krakow (PL)
• Pedzimaz, Tomasz

31-315 Krakow (PL)
• Palka, Szymon

34-450 Kroscienko nad Dujancem (PL)

(54) A system and a method for determining approximate set of visible objects in beam tracing

(57) A computer-implemented method for beam trac-
ing, wherein a set of beams is a representation of a phys-
ical wave phenomenon, the method comprising: receiv-
ing information regarding a beam and potentially inter-
secting objects; executing beam-triangle intersection
tests; discarding elements, for which an intersection test
is negative; dividing the beam into smaller partial beams;

providing data for parallel processing; discarding of tri-
angles with respect to partial beams; dividing the partial
beams into smaller partial beams; approximating the
smaller partial beams with rays; for each ray finding the
closest triangle if such a triangle exists; creating delimited
smaller partial beams; selectively applying merging of
smaller partial beams previously delimited.

EP 2 879 409 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] Embodiments of the invention generally relate
to the field of beam tracing, in particular to sound tracing
and thus simulating acoustic effects in real time.

Description of the Related Art

[0002] Presently, such solutions are mainly used in an-
imated movies and/or cartoons, where calculations are
time-consuming, because they do not require real-time
regime. In turn, in video games industry there are usually
geometry regions comprising activation triggers of vari-
ous modification of sound.
[0003] A prior art Algorithm described in the literature
and called Adaptive Frustum http://gam-
ma.cs.unc.edu/SOUND/data/vis2008.pdf; (AD-Frustum:
Adaptive Frustum Tracing for Interactive Sound Propa-
gation; Anish Chandak, Christian Lauterbach, Micah
Taylor, Zhimin Ren, Dinesh Manocha, Member, IEEE)
also http://hal.inria.fr/docs/00/50/99/81/PDF/CG98.pdf
(A Beam Tracing Method with Precise Antialiasing for
Polyhedral Scenes; Djamchid GHAZANFARPOUR and
Jean-Marc HASENFRATZ; Laboratoire MSI - Université
de Limoges) use an adaptive beam subdivision for de-
tecting polyhedra. In theory these methods allow to quick-
ly find objects limiting (objects in range of the beam, not
obstructed by others) the beam but in practice the struc-
tures used in the algorithm are too expensive (their usage
is too time consuming) for its use in real-time solutions.
Expensive intersection tests comprising specific cases,
tree structures and a limited accuracy and slow beam
merging algorithm does not allow to take full advantage
of modern processors. The same problems make the al-
gorithm difficult to implement and reduce its extension
possibilities.
[0004] Another prior art publication US 8139780 B2
entitled "Using ray tracing for real time audio synthesis"
discloses a sound engine may determine a final sound
at a listener location by emulating sound waves within a
three-dimensional scene. The sound engine may emu-
late sound waves by issuing rays from a location of a
sound event and tracing the rays through the three-di-
mensional scene. The rays may intersect objects within
the three-dimensional scene which have sound modifi-
cation factors. The sound modification factors and other
factors (eg., distance traveled by the ray, angle of inter-
section with the object, etc.) may be applied to the sound
event to determine a final sound which is heard by the
listener.
[0005] Another prior art publication entitled "Interactive
Sound Rendering in Complex and Dynamic Scenes us-
ing Frustum Tracing" by Christian Lauterbach, Anish
Chandak, and Dinesh Manocha, published in IEEE

TRANSACTIONS ON VISUALIZATION AND COMPU-
TER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DE-
CEMBER 2007 discloses an approach for real-time
sound rendering in complex, virtual scenes with dynamic
sources and objects. The approach combines the effi-
ciency of interactive ray tracing with the accuracy of trac-
ing a volumetric representation. There is used a four-
sided convex frustum and perform clipping and intersec-
tion tests using ray packet tracing. A simple and efficient
formulation is used to compute secondary frusta and per-
form hierarchical traversal. However the algorithm can-
not perform real-time simulation and rendering on a high-
end PC. This method has proven so complex that it is
impossible to be executed in real time, in games on cur-
rent hardware solutions.
[0006] The aim of the present invention is a computer
implemented method for determining visibility in beam
tracing that would be more efficient in terms of computing
resources and lead to decreased time of obtaining the
required results and thus enable creating real-time
soundtracer.

Summary of the invention

[0007] The object of the invention is a computer-imple-
mented method for beam tracing, wherein a set of beams
is a representation of a physical wave phenomenon, the
method comprising the steps of: receiving information
regarding a beam and potentially intersecting objects;
executing beam-triangle intersection tests; discarding el-
ements, for which an intersection test is negative; dividing
the beam into smaller partial beams; providing data for
parallel processing; discarding of triangles with respect
to partial beams; dividing the partial beams into smaller
partial beams; approximating the smaller partial beams
with rays; for each ray, finding the closest triangle, if such
a triangle exists; creating delimited smaller partial beams;
selectively applying merging of smaller partial beams
previously delimited.
[0008] Another object of the invention is a system for
beam tracing, wherein a set of beams is a representation
of a physical wave phenomenon, the system comprising:
a hierarchical model memory for storing a scene repre-
sentation; a dedicated signal processor for performing
intersection tests of ray-triangle and beam-triangle type;
a controller, coupled via a bus to the processor, config-
ured to execute the steps of: receiving, via an I/O con-
troller, information regarding a beam and potentially in-
tersecting objects; executing beam-triangle intersection
tests; discarding elements, for which an intersection test
is negative; dividing the beam into smaller partial beams;
providing data for parallel processing; discarding of tri-
angles with respect to partial beams; dividing the partial
beams into smaller partial beams; approximating the
smaller partial beams with rays; for each ray finding the
closest triangle if such a triangle exists; creating delimited
smaller partial beams; selectively applying merging of
smaller partial beams previously delimited.

1 2

EP 2 879 409 A1

3

5

10

15

20

25

30

35

40

45

50

55

[0009] Another object of the invention is a computer
readable non-transitory storage medium storing compu-
ter-executable instructions performing all the steps of the
computer-implemented method according to the inven-
tion when executed on a computer.
[0010] Preferably, the information regarding potential-
ly intersecting objects is input as a hierarchical or not
hierarchical representation of a scene composed of ob-
jects, preferably a scene tree.
[0011] Preferably, the method further comprises pro-
viding data for parallel processing partial beams and re-
spective triangles in relation to the partial beams.
[0012] Preferably, the discarding of triangles with re-
spect to partial beams is executed based on a result of
a test on intersecting with the partial beams and those
for which the intersection test is negative are discarded.
[0013] Preferably, the step of creating delimited small-
er partial beams involves delimiting the beams with an
object, which is located closest to the beginning of a ray
approximating this particular smaller partial beam.
[0014] Preferably, the object located closest to the be-
ginning of a ray approximating this particular smaller par-
tial beam is determined based on a ray-triangle intersec-
tion test.
[0015] Preferably, the ray-triangle intersection test is
the Ingo Wald’s test. Preferably, the ray-triangle inter-
section tests are executed in parallel with a use of SSE
or AVX instructions.
[0016] Preferably, the merging of smaller partial
beams is executed for smaller partial beams delimited
by matching triangles.
[0017] Preferably, the matching triangles are the same
triangle or two different triangles located on the same
plane and having the same material, or triangles located
in planes having similar normal or having acoustic ma-
terial of similar characteristics.
[0018] Preferably, the set of beams is a representation
of a sound wave.

Brief description of drawings

[0019] The object of the invention has been presented
in an exemplary embodiment in a drawing, in which:

Fig. 1 presents a set of four cases depicting usage
of a ray - triangle approach;
Fig. 2 shows division of a beam into a predefined
number of sections and approximation of each of
these sections with a separate ray;
Fig. 3 presents the process of Adaptive Ray-Frus-
tum;
Figs. 4A - 4I present the method according to the
present invention on an exemplary scene; and
Fig. 5 presents a block diagram of a system accord-
ing to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EM-
BODIMENTS

NOTATION AND NOMENCLATURE

[0020] Some portions of the detailed description which
follows are presented in terms of data processing proce-
dures, steps or other symbolic representations of oper-
ations on data bits that can be performed on computer
memory. Therefore, a computer executes such logical
steps thus requiring physical manipulations of physical
quantities.
[0021] Usually these quantities take the form of elec-
trical or magnetic signals capable of being stored, trans-
ferred, combined, compared, and otherwise manipulated
in a computer system. For reasons of common usage,
these signals are referred to as bits, packets, messages,
values, elements, symbols, characters, terms, numbers,
or the like.
[0022] Additionally, all of these and similar terms are
to be associated with the appropriate physical quantities
and are merely convenient labels applied to these quan-
tities. Terms such as "processing" or "creating" or "trans-
ferring" or "executing" or "determining" or "detecting" or
"obtaining" or "selecting" or "calculating" or "generating"
or the like, refer to the action and processes of a computer
system that manipulates and transforms data represent-
ed as physical (electronic) quantities within the compu-
ter’s registers and memories into other data similarly rep-
resented as physical quantities within the memories or
registers or other such information storage.
[0023] A beam is considered herein to be a three di-
mensional object having a base that is a polygon (fre-
quently located on a plane), having a defined range and
edge vectors originating from vertices of the base (all
such vectors should be directed at one half plane).
[0024] If extension of the edge vectors intersects at a
certain point this point is called an apex. For example in
case of a beam having a quadrangle base, two of the
four vectors may intersect at one point and the other two
in a second point. In such a case the beam virtually starts
at the edge.
[0025] The most suitable bases are a triangle and a
quadrangle, however, the present method may be ap-
plied to any polygon. A beam having a quadrangle base
is frequently called a frustum.
[0026] The present invention is a new method called
Adaptive Ray-Frustum created after iterative attempts to
extend the Adaptive Frustum algorithm and testing how
this extensions impact performance.
[0027] The method is based on an observation that it
is advantageous to replace the small number of complex
tests with an increased number of much simpler tests. In
practice, most of the quadtree structure used to manage
beam subdivision in the Adaptive Frustum algorithm
reaches the maximum level of subdivision after addition
of a low number of triangles. It turns out, that in many
cases the number of simple tests used in Adaptive Ray-

3 4

EP 2 879 409 A1

4

5

10

15

20

25

30

35

40

45

50

55

Frustum can be lower than the number of complex tests
in Adaptive Frustum.
[0028] The method according to the present invention
is based on an assumption that a sufficiently small beam
can be approximated with a ray. For example, as men-
tioned earlier, objects in a scene used for the simulation
of sound are much less complex than the corresponding
graphic objects in scenes. This means that when a beam
of a small size is approximated with a ray, the likelihood
of error is low. In addition, most of the beams are fully
obstructed or not obstructed at all.
[0029] If it is assumed that a triangle tested for inter-
secting with a beam is sufficiently large that it is neces-
sary to execute intersection tests with every part of the
beam (after k-th clipping of the beam, the number of its
parts is 4k), there will be executed 4k+1-1 tests.
[0030] The present invention introduces execution of
up to 4k simpler tests and 4p-1 complex beam-triangle
tests. An appropriate selection of p and k parameters
allows for significant increase of processing speed and
thereby significantly reduces execution time.

APPROXIMATION OF A BEAM WITH RAYS

[0031] Subdivision of a beam into parts is performed
to allow binary determination whether a triangle inter-
sects with appropriately small part of the beam or not.
When an intersection occurs, it is assumed that a part of
the triangle intersecting the beam, fully obstructs it. In-
deed, this is true only for a very small beams.
[0032] Since it is decided to use such a simplification,
it appears unnecessary to use an expensive intersection
test between the beam and the triangle. This expensive
test can be replaced with a much simpler check whether
a ray routed through the center of the beam intersects
with the triangle.
[0033] On the other hand, for large beams the approx-
imation with a ray may introduce a high error and lead to
a rejection of relevant triangles. The following description
discusses the individual components of the solution.
[0034] The difference between a large and a small
beam lies in its appropriate division taking into account
a given scene. A division allowing to detect many trian-
gles achieves a small beam while a division which does
not allow to detect many objects in a scene results in a
large beam. This is a quantitative approach. For example
assuming there is a one point source of sound and 6
beams are emitted from the source, each originating at
a different wall of a hexagon defined on the source.
[0035] If the beams are not split into partial beams, for
each there may be detected 1 wall, which means that the
sound may reflect from at most 6 different walls. If each
beam is divided one time, there will be 24 partial beams
which implies that the number of objects the sound may
reflect off is at most 24. In case of two times division,
there are up to 96 detected objects and in case of three
times division there are up to 384 objects, while in case
of four times division, there are up to 1536 objects de-

tected.
[0036] Therefore referring to a large beam means a
beam insufficiently divided with respect to the scene, that
is not capable of detecting numerous objects (triangles).
This problem is partially depicted in Fig. 1C, where a
large triangle is not detected at all because the beam has
not been divided and the ray has missed the triangle. As
shown in Fig. 1D the smaller triangle obstructs the large
triangle and because the division of the beam is insuffi-
cient (large beam) it will not detect the large triangle.
[0037] The above descriptive definition may also be
quantitatively defined with an equation i.e. the method
does not detect objects smaller than (2^(p-1))/h, wherein
h is a distance to a given object and p is the number of
divisions. For example: in case of a four times division
and objects 10 meters away, the resolution of the method
is 1.25 meter and only object larger than this number will
certainly be detected. Smaller objects have only a certain
probability of detection but there will never be a certainty.

USE OF RAY-TRIANGLE INTERSECTION TEST IN
ADAPTIVE FRUSTUM

[0038] Adaptive Frustum algorithm performance tests
show that its computationally most expensive part is the
intersections tests. Such a test is executed frequently
and each of its execution requires not only a lot of calcu-
lations, but also loading into a memory information about
given sub-beam.
[0039] The ideal way to speed up the intersection al-
gorithm is to eliminate the need for mentioned test exe-
cution. However, it is not possible for all the triangles.
Simplifying the intersection test can thus significantly
speed up the processing of beams. A further improve-
ment is to replace the "beam - triangle" intersection test
with a "ray - triangle".
[0040] Unfortunately, the beam approximation with a
ray is inaccurate for large beams. In this case, as poten-
tially limiting, there would be taken into consideration only
the objects intersecting with the ray passing through the
center of the beam. This approach is flawed for large
beams. The use of such a simplified test for large beams
in conjunction with proper level of beam subdivision sig-
nificantly reduces the accuracy of the algorithm.
[0041] Fig. 1 presents a set of four cases depicting use
of a ray - triangle approach. Case (a) presents a ray (101),
approximating a beam (102), which starts at the beam’s
starting plane (103).
[0042] Case (b) presents a ray intersecting with a tri-
angle (104). The triangle (104) is thereby classified as
intersecting with the beam.
[0043] Case (c) presents a large triangle (105) that in-
tersects with the beam but the ray (101) approximating
the beam does not intersect with the triangle (105). As a
result, the triangle (105) is erroneously classified as not
intersecting with the beam.
[0044] Case (d) presents two triangles (104, 106) in-
tersecting with the beam (102).

5 6

EP 2 879 409 A1

5

5

10

15

20

25

30

35

40

45

50

55

[0045] The approximating ray (101) intersects with
both triangles, whereas the smaller triangle (106) is clos-
er to the beginning of the ray. The smaller triangle (106)
is classified as covering the whole plane of the beam
(102) although the larger triangle (104) is a better candi-
date.

AN ALGORITHM USING A GRID OF RAYS

[0046] A solution of the problem of large beams ap-
proximation with a ray is a uniform division of the beam
into a predefined number of sections and approximation
of each of these sections with a separate ray as shown
in Fig. 2.
[0047] Figure 2 shows, as case (a), a possible approx-
imation of a beam with four rays. This approach allows
for four times higher accuracy. It means that without di-
vision there could be one triangle detected of those that
intersect with the beam. Division into four partial beams
allows to detect four triangles. Further division will in-
crease accuracy but also increase the computational ef-
fort.
[0048] A test of four rays can be effectively accelerated
with a use of SSE (Streaming SIMD Extensions) instruc-
tions. Case (b) shows an approximation of a beam with
sixteen rays, equivalent to a threefold division of the
beam.
[0049] Additionally, AVX (Advanced Vector Exten-
sions) instructions use make it feasible to execute the
intersection test of all the rays with a given triangle with
two test runs (instead of sixteen runs without the vector
instructions), which gives further (in the range of 3 - 4
times depending on instructions used and number of ac-
cesses to memory etc.) increase of speed.
[0050] Using the SSE allows to test intersection of six-
teen rays with a triangle in four runs, giving up to four
times increase of speed. AVX differs from the SSE mainly
in that AVX executes two times more computations dur-
ing data processing.
[0051] After creating a grid of rays, for each of the rays
a triangle must be found, for which the distance along
the direction vector from the beginning of the ray to the
plane of the triangle is minimal.
[0052] It is assumed that this is the triangle that limits
the beam’s section that is processed. In order to reduce
the number of beams created by reflection from delimiting
objects, there is introduced an additional step of merging
parts of the beam limited by matching triangles (a com-
patible triangle is the same triangle or two different trian-
gles located on the same plane and having the same
material, or triangles located in planes having similar nor-
mal and plane constant and having acoustic material of
similar characteristics.
[0053] In this approach, the adaptability of the algo-
rithm during the step of finding limiting triangles is, effec-
tively pushed to the final stage of the process.
[0054] The solution described above is much simpler
than the one proposed in Adaptive Frustum algorithm. It

does not require the use of tree structures, eliminates up
to half of the retained beam parts and significantly reduc-
es the size of the data needed for description of the beam
part.
[0055] In practice, if for each ray method has found the
closest triangle (by scanning all the triangles and exe-
cuting the intersection test with the ray), it is possible to
significantly reduce memory usage in this part of the al-
gorithm. The problem of the approach described herein
is a large number of tested ray-triangle intersections. The
number of triangles potentially intersecting with the beam
is large, however, most of these triangles ultimately prove
not to limit the beam. Nevertheless, for small values of
maximum beam subdivision, the presented approach is
more efficient than the approach based on Adaptive Frus-
tum.

A SOLUTION COMBINING BEAM-TRIANGLE AND
RAY-TRIANGLE TESTS

[0056] Algorithms operating directly on beams and op-
erating only on rays, have major weaknesses. The first
of them is constrained by the requirement for costly tests,
but the hierarchical processing allows fast rejection of
triangles. The second algorithm allows for much faster
processing of a single triangle, but the number of verified
triangles is too high.
[0057] The solution to this problem is to combine the
advantages of both algorithms. The "beam-triangle" in-
tersection tests are well suited for large beams, and
therefore there a quick and inaccurate test for coarse
rejection of triangles that certainly do not intersect with
the beam can be used to improve efficiency. The number
of triangles to be processed within a given scene, re-
duced by beam intersection test, in turn significantly re-
duces the number of simple "ray-triangle" intersection
tests. This leads to better performance.
[0058] Another improvement of the aforementioned
method is to use p-times division of the beam with appli-
cation of the "beam-triangle" test for discarding the high-
est number of triangles. After execution of this step, a
given section of the beam is divided k-p times and the
obtained sections are approximated with rays.
[0059] The practical tests have shown that the p values
giving the best results range between k/4 to k/2 depend-
ing on the applied "ray-triangle" intersection test and the
type of vector instructions used in the implementation.
As a selection of a value between k/4 to k/2 is scene
dependent it is best to execute tests of a given scene. A
default value may also be applied.

THE INGO WALD TEST

[0060] The test is based on the use of pre-calculated
values for calculating barycentric coordinates of a point
of intersection of a ray with the plane of a triangle. This
algorithm is well suited to implementation using vector
instructions, where several rays are tested at the same

7 8

EP 2 879 409 A1

6

5

10

15

20

25

30

35

40

45

50

55

time in terms of existence of an intersection with a single
triangle.
[0061] Fig. 4 presents that partial beams are approxi-
mated with a certain number of rays. Thereafter for each
triangle that intersects with a given partial beam there
are executed intersections with rays that approximate
such partial beam. This is the moment when an intersec-
tion test, such as Ingo Wald’s test, is required. This may
be any intersection test such as Plucker coordinates test
defined by Moller-Trumbore or other (such as

- Möller Tomas i Trumbore Ben. Fast, minimum stor-
age ray-triangle intersection. Journal of Graphics
Tools 2(1). 1997, s. 21-28;

- Shevtsov Maxim, Soupikov Alexei i Kapus Alexan-
der; Ray-Triangle Intersection Algorithm for Modern
CPU Architectures. Proceedings of GraphiCon’2007
conference, 2007;

- Wald Ingo; Realtime Ray Tracing and Interactive
Global Illumination. PhD Thesis. Saarbrucken : Max-
Planck-Institut fur Informatik, 2004.

[0062] There are three possible versions of the imple-
mentation of the algorithm:

- an implementation that uses no vector instructions;
- an implementation that uses SSE instructions - al-

lows to perform an intersection test of four rays at
one time against one triangle

- an implementation that uses AVX instructions - al-
lows to perform an intersection test of eight rays at
one time against one triangle.

[0063] Additionally, there may be implemented inter-
section of a plurality of triangles with one ray and accel-
eration of intersection of a single ray with a single triangle.
Use of AVX and/or SSE and test of a plurality of rays at
one time have proven most efficient on typical CPUs but
other versions may be more efficient on other platforms
or be easier to implement in designated hardware.

THE ADAPTIVE RAY-FRUSTUM ALGORITHM

[0064] The Adaptive Ray-Frustum Algorithm uses two
levels of triangles processing in order to reduce the
number of "ray-triangle" tests made in its last phase. The
first level of processing is to discard these triangles, which
certainly do not intersect with the beam or one of its parts.
In addition, a scene tree is used to provide approximate
set of triangles intersecting the beam. Such object can
be defined as a hierarchical or non hierarchical structure
and can provide spatial partitioning of the scene.
[0065] There is set a maximum depth of division in this
part of the algorithm as p. From the list of triangles po-
tentially intersecting with the beam there are chosen
those, for which the "beam-triangle" test returns a positive
result. Next, this list is processed in the same manner in
each of the four parts of the beam. Subsequently, after

p steps, the resulting list of potential triangles restricting
the beam is passed to the second part of the algorithm.
[0066] The second level of processing in the Adaptive
Ray-Frustum algorithm is a k-p fold division of the beam
into parts and approximation of each part with a ray. For
each of the triangles obtained from the first level, there
is executed an intersection test with all rays approximat-
ing that part of the beam.
[0067] The state of each ray is described by a triangle,
which intersects with this ray and a distance to the inter-
section point. If the tested triangle is closer than the re-
corded in the current state of the ray and the intersection
test is positive, the state of the ray is updated.
[0068] The last step of the algorithm is to attempt merg-
ing of matching beams in order to reduce the number of
beams stored in the algorithm.
[0069] The aforementioned method may be formulated
in pseudocode as the following three methods:
[0070] [The Adaptive Ray-Frustum Method]

 Adaptive Ray-Frustum(beam,
maximum_beam_division,
 pre_processing_depth, scene_tree)
 {
 1 Triangles = find_triangles(scene_tree)
 2 If Triangles.count > 0:
 {
 4 grid_of_rays = Create_Grid_Of_Rays(beam)
 5 Process_The_Beam(beam,
maximum_beam_division,
 pre_processing_depth, Triangles,
 grid_of_rays)
 6 Merge_partial_beams(grid_of_rays,
maximum_beam_division)
 }
}

[0071] [The beam processing method]

 Process_The_Beam(beam, maximum_beam_division,
 pre_processing_depth,
Triangles_To_Process,
 grid_of_rays)
 {
 1 For each of partial beams:
 {
 2 Triangles =
Triangles_Intersecting_With_The_Beam(
 beam_part, Triangles_To_Process)
 3 If pre_processing_depth > 0:
 {
 4 Process_Beam(partial_beam,
maximum_beam_division - 1,
 pre_processing_depth - 1, Triangles,
grid_of_rays)
 }
 5 Else:
 {
 6 Process_Ray_Set(partial_beam,
 maximum_beam_division - 1,
 Triangles, grid_of_rays)

9 10

EP 2 879 409 A1

7

5

10

15

20

25

30

35

40

45

50

55

 }
 }
}

[0072] [The method for processing a set of rays]

 Process_Beams_Set(partial_beam,
 maximum_beam_division - 1,
 Triangles, grid_of_rays)
 {
 1 Rays_Count = maximum_beam_division * 2
 2 For Each Ray Of The partial_beam:
 {
 3 Triangle =
Closest_Triangle_Intersecting_With_The_Ray(*
 Triangles)
 4 Store the Ray and the Triangle in the
grid_of_rays
 }
}

[0073] The process of finding the closest triangle may
be as simple as scanning through the list of objects and
selecting the one that intersects with a ray and the dis-
tance from the source of the ray to the intersection point
is minimal (at this point the ray-triangle intersection test
is applied).
[0074] Alternatively, one may sort the triangles accord-
ing to distance of one vertex from the source plane of the
beam (sometimes it allows for earlier completion of the
search for the closest triangle because if one is found
and is closer than the minimum distance of those yet to
scan - the process may be stopped).

THE ALGORITHM FOR BEAMS MERGING

[0075] The fact of a uniform division of the beam into
parts can significantly simplify merging together match-
ing parts. Matching parts are considered parts that are
adjacent and are limited by the same triangle or a triangle
having the same material and positioned in the same
plane. Sweep algorithm is used to browse the grid of
partial beams and to find areas, which, are limited by the
matching triangles (matching partial beams are limited
by matching triangles). Such areas are then merged in
order to reduce the number of beams to be processed in
the algorithm for tracking beams.
[0076] Beam merging is advantageous, because a
beam is divided k times and has 4k parts, which means
that there will be created 4k of reflected beams. Each of
the reflected beams will then be divided k times into 4k

parts, which gives a maximum of 4k * 4k = 42k beams.
For example, with an assumption that a source emits 6
beams in sound tracing engine in which only reflections
are allowed, the final maximum number of beams (be-
longing to the same sound source) generated in the al-
gorithm is 6 * (1 + 4k + 42k + 44k). For k=0 this means a
maximum of 24 beams and for k=1 a maximum of 1662
beams, for k=2 a maximum of 394854 beams, for k=3 a

maximum of 100688262 beams. Over 100 million beams
in case of a division of each beam into 64 parts is an
unacceptable number.
[0077] Limitation of the number of beams is of partic-
ular advantage at the first and the second reflection, be-
cause these beams will have to be further processed.
For example in an exemplary test model there are created
1425383 beams in a conventional algorithm executed in
1.35s while after employing of the new algorithm of
beams merging, their number is reduced to 4559 and the
execution time is 0.04s.
[0078] Figure 3 presents the process of Adaptive Ray-
Frustum. At step 301, there is received information re-
garding a sound beam and potentially intersecting ob-
jects (using a scene tree). In the Adaptive Ray-Frustum
Method presented earlier in pseudocode, this step cor-
responds to line 1. Subsequently, at step 302 there are
executed "beam-triangle" intersection tests. In the beam
processing method presented earlier in pseudocode, this
step corresponds to line 2. Those elements, for which an
intersection test is negative are discarded at step 303.
[0079] After the first major part of the method is com-
plete, the procedure advances at step 304 to divide the
beam into smaller partial beams. In the beam processing
method presented earlier in pseudocode, this step cor-
responds to lines 3-4. Subsequently, at step 305, there
is provided data for parallel processing - for example two
partial beams and respective triangles to further process-
ing in relation to the partial beams. In the beam process-
ing method presented earlier in pseudocode, this step
corresponds to lines 3-4.
[0080] Next, at step 306, there is executed discarding
of triangles with respect to partial beams. The scene el-
ements are verified against intersecting with the partial
beams. Those for which the intersection test is negative
are discarded. In the beam processing method presented
earlier in pseudocode, this step corresponds to line 2.
[0081] Subsequently, at step 307, the partial beams
are divided into smaller partial beams. In the method for
processing a set of rays presented earlier in pseudocode,
this step corresponds to line 1. Thereafter, at step 308,
the partial beams of step 307 are approximated with rays.
In the method for processing a set of rays presented ear-
lier in pseudocode, this step corresponds to line 2. Next,
at step 309, for each ray there is found the closest triangle
if such a triangle exists. In the method for processing a
set of rays presented earlier in pseudocode, this step
corresponds to line 3. Thereafter, at step 310, there are
created delimited partial beams. Each ray from the pre-
vious step corresponds to a single partial beam. The par-
tial beam is delimited by an object, which is located clos-
est to the beginning of a ray approximating this particular
partial beam of step 307. In the method for processing a
set of rays presented earlier in pseudocode, this step
corresponds to line 4.
[0082] The final step of the method 311 is to selectively
apply merging of partial beams previously delimited. This
step is executed in order to limit the result of the process-

11 12

EP 2 879 409 A1

8

5

10

15

20

25

30

35

40

45

50

55

ing. In the Adaptive Ray-Frustum Method presented ear-
lier in pseudocode, this step corresponds to line 6.
[0083] Figures 4A - 4I present the method according
to the present invention on an exemplary scene. The
scene comprises a single beam and five obstacles P1-
P5 as shown in Fig. 4A also comprising one beam. Fig.
4B presents a result of executing method steps 302, 303
that is the whole P5 and part of P1 objects are discarded
as non-intersecting with the main, initial beam. Fig. 4C
presents the result of step 304 of the method wherein in
this example the beam is divided into two partial beams.
Fig. 4D presents the result of step 305 and 306 of the
method. Data for parallel processing of the left partial
beam and the right partial beam are provided and objects
are discarded with respect to the previously defined par-
tial beams.
[0084] Fig. 4E presents further division of the left partial
beam and the right partial beam in line with the step 307
of the method. Fig. 4F presents step 308 of the method
where partial beams are approximated with rays. Fig. 4G
presents step 309 of the method where the closest trian-
gles are found for respective beams. Fig. 4H presents
step 310 of the method and the resulting delimited partial
beams (not rays as at this stage the processing of partial
beams is resumed).
[0085] Finally, Fig. 4I presents the final result of step
311 with partial beam merging applied. In this case it was
possible to merge two partial beams delimited by the P3
object. Merging of partial beams of P2 was not possible
because the walls of the P2 object delimiting the partial
beams are located in different planes. A comparison of
the result of the method with an ideal result allows to
determine that an appropriate selection of coefficients
allows for obtaining an acceptable approximations of a
precise result. The phase of merging partial beams al-
lows in this case to decrease the number of final partial
beams from 8 to 7. In practice there are frequently situ-
ations, in which the number of final beams decreases
multiple times after the use of merging algorithm.
[0086] All the examples of Fig. 4 have been depicted
in a two dimensional case. The objects shown are pillars
in the three dimensional space (a front view instead of
top view as in Fig. 4. Each edge of a perspective view of
the pillar is in 3D represented by two triangles.
[0087] Fig. 5 presents a block diagram of a system
according to the present invention. The system 501 ac-
cording to the present invention may be also built as a
dedicated hardware module, which will perform analo-
gous role to existing GPU units. Such a module may be
split into two core parts: a hierarchical model memory
507 for storing a beam and a scene tree and a dedicated
signal processor 505 for performing intersection tests
(both: ray-triangle and beam-triangle). The module can
also be a part of hardware performing real-time sound
tracing, which by using a scene representation, sources
and receiver positions could render sound in a similar
way to which GPU (Graphics Processing Unit) is used to
render graphics.

[0088] Additionally there is a general purpose control-
ler 502, for executing the steps of the aforementioned
method for sound tracing in cooperation with an I/O con-
troller 506, a memory 503.
[0089] The inner circuits will consist of hardware im-
plementation of the aforementioned algorithms. In order
to perform transformation from software to hardware one
can use existing industry standard solutions like VHDL
language.
[0090] The invention may also be implemented in a
form of a dedicated hardware module, preferably an ex-
tension card, that will detect objects. This dedicated hard-
ware module may be connected with other modules to
create complete beam tracing or sound rendering mod-
ule.
[0091] A processor of such extension card comprises
a set of multithread logical units that using vector instruc-
tions process in parallel independent sets of tests of
beam-triangle intersection.
[0092] Such processor also comprises a set of multi-
thread logical units that using vector instructions process,
in parallel, independent sets of tests of ray-triangle inter-
section.
[0093] The extension card also comprises a dedicated
dispatcher circuit for assigning sets of tests to idle logical
units.
[0094] The extension card also comprises a memory
having a hierarchical model for storing a scene model.
The hierarchical model memory is connected via a bus
to the processors. A read/write buffer may comprise rays
in a form of normalized directional vectors.
[0095] A scene tree is loaded into the hierarchical mod-
el memory at an initialization stage. Software using the
extension card sends to the card a set of beams, for which
visible objects have to be found. In response the software
receives triangles intersecting with different rays into
which the beam was divided. Such extension card may
be implemented in System on Chip technology (SoC)
and may be a dedicated hardware for video gaming ma-
chines or computers or for other multimedia and wave
phenomena simmulation purposes.
[0096] A hardware implementation increases efficien-
cy, which is an advantage as performance in gaming en-
vironments is always a priority.
[0097] The described algorithm significantly speeds up
processing in applications for tracing beams in order to
simulate the propagation of sound and other applications
where beam tracing can be used. The use of a hybrid
combination of processing beams and processing of rays
eliminates the weaknesses of the Adaptive Frustum al-
gorithm. The resulting method for finding objects limiting
the beam is much simpler to implement and allows the
use of a more efficient algorithm for merging the beams.
There has been gained a significant improvement in ef-
ficiency, while at the same time reducing the number of
output beams.
[0098] It is a mixture of the Adaptive Frustum Tracing
and Uniform Frustum Tracing with appropriate applica-

13 14

EP 2 879 409 A1

9

5

10

15

20

25

30

35

40

45

50

55

tion of both of them. The first algorithm allows for quick
discarding of triangles out of range and the other uses
simple tests. The present solution allows for execution
of some complex discarding tests and then execute as
a set of quick simple tests on rays.
[0099] The present method due to multi-pass structure
first extracts, from the scene tree, cells intersecting with
the beam and from these cells extracts triangles subse-
quently passed to a discarding and beam division algo-
rithm executed for a given time in order to finally approx-
imate partial beams with rays and the remaining triangles
are intersected with these rays. In case there is a need
to do so, subsequent phases may be combined, for ex-
ample extracting cells from the scene tree and obtaining
triangles from them.
[0100] A different embodiment of the present invention
may instead of emitting from the source/emitter beams
in all directions, emit a predefined number of rays and
perform reflections from full triangles (one time for each
triangle):

- First, rays are emitted in all directions and there are
found triangles with which they intersect; and

- Secondly, There are created reflected beams for all
such triangles and subsequently typical processing
is applied.

[0101] It can be easily recognized, by one skilled in the
art, that the aforementioned method for sound tracing
may be performed and/or controlled by one or more com-
puter programs. Such computer programs are typically
executed by utilizing the computing resources in a com-
puting device such as personal computers, personal dig-
ital assistants, cellular telephones, receivers and decod-
ers of digital television or the like. Applications are stored
on a non-transitory medium. An example of a non-tran-
sitory medium is a non-volatile memory, for example a
flash memory or volatile memory, for example RAM. The
computer instructions and are executed by a processor.
These memories are exemplary recording media for stor-
ing computer programs comprising computer-executa-
ble instructions performing all the steps of the computer-
implemented method according the technical concept
presented herein.
[0102] While the invention presented herein has been
depicted, described, and has been defined with reference
to particular preferred embodiments, such references
and examples of implementation in the foregoing speci-
fication do not imply any limitation on the invention. It will,
however, be evident that various modifications and
changes may be made thereto without departing from
the broader scope of the technical concept. The present-
ed preferred embodiments are exemplary only, and are
not exhaustive of the scope of the technical concept pre-
sented herein.
[0103] It can be easily recognized, by one skilled in the
art, that the aforementioned method for beam tracing, in
particular sound tracing, may be performed for simulating

other physical wave phenomena like light, radio waves
or shock waves. As a result the method can be used in
multimedia and simulation systems other than sound
tracer.
[0104] Accordingly, the scope of protection is not lim-
ited to the preferred embodiments described in the spec-
ification, but is only limited by the claims that follow.

Claims

1. A computer-implemented method for beam tracing,
wherein a set of beams is a representation of a phys-
ical wave phenomenon, the method comprising the
steps of:

- receiving (301) information regarding a beam
and potentially intersecting objects;
- executing (302) beam-triangle intersection
tests;
- discarding (303) elements, for which an inter-
section test is negative;
- dividing (304) the beam into smaller partial
beams;
- providing (305) data for parallel processing;
- discarding (306) of triangles with respect to par-
tial beams;
- dividing (307) the partial beams into smaller
partial beams;
- approximating (308) the smaller partial beams
with rays;
- for each ray, finding (309) the closest triangle,
if such a triangle exists;
- creating (310) delimited smaller partial beams;
- selectively applying merging (311) of smaller
partial beams previously delimited (310).

2. The method according to claim 1 wherein the infor-
mation regarding potentially intersecting objects is
input as a hierarchical or not hierarchical represen-
tation of a scene composed of objects, preferably a
scene tree.

3. The method according to claim 1 or 2 further com-
prising providing (305) data for parallel processing
partial beams and respective triangles in relation to
the partial beams.

4. The method according to any of previous claims
wherein the discarding (306) of triangles with respect
to partial beams is executed based on a result of a
test on intersecting with the partial beams and those
for which the intersection test is negative are dis-
carded.

5. The method according to any of previous claims
wherein the step of creating (310) delimited smaller
partial beams involves delimiting the beams with an

15 16

EP 2 879 409 A1

10

5

10

15

20

25

30

35

40

45

50

55

object, which is located closest to the beginning of
a ray approximating this particular smaller partial
beam.

6. The method according to claim 5 wherein the object
located closest to the beginning of a ray approximat-
ing this particular smaller partial beam is determined
based on a ray-triangle intersection test.

7. The method according to claim 6 wherein the ray-
triangle intersection test is the Ingo Wald’s test.

8. The method according to claim 6 characterized in
that the ray-triangle intersection tests are executed
in parallel with a use of SSE or AVX instructions.

9. The method according to any of previous claims
wherein the merging (311) of smaller partial beams
is executed for smaller partial beams delimited by
matching triangles.

10. The method according to any of previous claims
wherein the matching triangles are the same triangle
or two different triangles located on the same plane
and having the same material, or triangles located
in planes having similar normal or having acoustic
material of similar characteristics.

11. The method according to any of previous claims
wherein the set of beams is a representation of a
sound wave.

12. A system for beam tracing, wherein a set of beams
is a representation of a physical wave phenomenon,
the system comprising:

- a hierarchical model memory (507) for storing
a scene representation;
- a dedicated signal processor (505) for perform-
ing intersection tests of ray-triangle and beam-
triangle type;
- a controller (502), coupled via a bus to the proc-
essor (505), configured to execute the steps of:

- receiving (301), via an I/O controller (506),
information regarding a beam and potential-
ly intersecting objects;
- executing (302) beam-triangle intersection
tests;
- discarding (303) elements, for which an
intersection test is negative;
- dividing (304) the beam into smaller partial
beams;
- providing (305) data for parallel process-
ing;
- discarding (306) of triangles with respect
to partial beams;
- dividing (307) the partial beams into small-

er partial beams;
- approximating (308) the smaller partial
beams with rays;
- for each ray finding (309) the closest tri-
angle if such a triangle exists;
- creating (310) delimited smaller partial
beams;
- selectively applying merging (311) of
smaller partial beams previously delimited
(310).

13. A computer readable non-transitory storage medium
storing computer-executable instructions perform-
ing all the steps of the computer-implemented meth-
od according to any of claims 1-11 when executed
on a computer.

17 18

EP 2 879 409 A1

11

EP 2 879 409 A1

12

EP 2 879 409 A1

13

EP 2 879 409 A1

14

EP 2 879 409 A1

15

EP 2 879 409 A1

16

EP 2 879 409 A1

17

EP 2 879 409 A1

18

EP 2 879 409 A1

19

EP 2 879 409 A1

20

5

10

15

20

25

30

35

40

45

50

55

EP 2 879 409 A1

21

5

10

15

20

25

30

35

40

45

50

55

EP 2 879 409 A1

22

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 8139780 B2 [0004]

Non-patent literature cited in the description

• ANISH CHANDAK ; CHRISTIAN LAUTERBACH ;
MICAH TAYLOR ; ZHIMIN REN ; DINESH MANO-
CHA. AD-Frustum: Adaptive Frustum Tracing for In-
teractive Sound Propagation. IEEE, http://hal.in-
ria.fr/docs/00/50/99/81/PDF/CG98.pdf [0003]

• CHRISTIAN LAUTERBACH ; ANISH CHANDAK ;
DINESH MANOCHA. Interactive Sound Rendering
in Complex and Dynamic Scenes using Frustum
Tracing. IEEE TRANSACTIONS ON VISUALIZA-
TION AND COMPUTER GRAPHICS, November
2007, vol. 13 (6 [0005]

• MÖLLER TOMAS ; TRUMBORE BEN. Fast, mini-
mum storage ray-triangle intersection. Journal of
Graphics Tools, 1997, vol. 2 (1), 21-28 [0061]

• SHEVTSOV MAXIM ; SOUPIKOV ALEXEI ; KA-
PUS ALEXANDER. Ray-Triangle Intersection Algo-
rithm for Modern CPU Architectures. Proceedings of
GraphiCon’2007 conference, 2007 [0061]

• WALD INGO. Realtime Ray Tracing and Interactive
Global Illumination. PhD Thesis. Saarbrucken :
Max-Planck-Institut fur Informatik, 2004 [0061]

